
Chapter 23

Electric Potential
And

Electric Potential Energy



Potential Energy

• When we lift a stone of mass m a distance h above 
the ground the amount of work done in lifting the 
stone is equal to the change in potential energy of 
the stone.



Potential Energy cont.

• Similarly the work done moving an electrical 
charge in an electric field can be expressed as the 
change in potential energy of the charge.



Potential

• If we divide by the magnitude of the electric 
charge then we can define a quantity called the 
change in electric potential:



Potential cont.

• The electric potential at a given point is defined 
as:

• The unit of electric potential is joule / coulomb = 
volt.



Potential cont.

• The electric potential difference between two 
points B and A is related to the work per unit 
charge in the following manner:



Example

• The work done in moving a charge 
• qo = 2.0 C from A to B is WAB = 5.0x10-5

J.
• Find the difference in the electric potential 

energies of the charge and determine the 
potential difference between the points.



Solution

• The change in potential energy is:



Solution cont.

• The change in electric potential is:



Example: 
Conservation of Energy

• A particle of mass 1.8x10-5 kg and a positive 
charge of 3.0x10-5  C. It is released from rest at a 
point A and accelerates horizontally until it 
reaches a point B. 

• The particle does not rotate as it moves. The only 
force acting on the particle is an electric force. The 
electric potential at point A is 25 volts greater than 
at point B. 

• What is the speed of the particle when it reaches 
point B?



Solution

• By applying the 
conservation of energy 
and solving for the 
final velocity we get:



The Electric Potential Difference 
Created by Point Charges

• A positive point charge creates an electric 
potential throughout all space around it. 

• The potential can be related to the work done on 
the charge moving it from point A to B. 

• The work done can not be given by the force 
multiplied to the distance moved because the force 
given by Coulomb's law varies as the particle 
moves further away from the test charge. 



The Electric Potential Difference 
Created by Point Charges

• We must therefore use 
the full definition of 
work to determine the 
potential.

• If we divide by our 
charge qo then we get 
the potential 
difference.



The Electric Potential Difference 
Created by Point Charges

• If we located our point 
B farther and farther 
away from the charge, 
then as r approaches 
infinity:

• Then we can write the 
potential difference as:



Example

• Using the zero reference potential at 
infinity, determine the amount by which a 
point charge of 4.0x10-8 C alters the electric 
potential at a spot 1.2 m away when the 
charge is positive.



Solution

• By definition of the potential difference from a 
point located at infinity we get the following:

• Note: the symbol V is sometimes used to represent 
volts.



Example 
• Bart and Lisa Simpson are rubbing their feet 

on the carpet to create a static charge, which 
they intend to discharge on each other. 

• The pair accumulate -20 C each.
• Meanwhile, Homer comes in to the room 

with a positive 20 C on him. 
• If Bart and Lisa are 2 m apart and homer 

forms an isosceles triangle with them at a 
distance of 4 m, what is the potential 
created halfway between Bart and Lisa?



The Simpsons
-20 C

-20 C

20 C



Solution



Electric Potential of a Point 
Charge

• The electric 
potential in the 
plane around a 
single point charge 
is shown

• The red line shows 
the 1/r nature of the 
potential



Electric Potential of a Dipole

• The graph shows 
the potential (y-axis) 
of an electric dipole

• The steep slope 
between the 
charges represents 
the strong electric 
field in this region
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The Potential Energy of a Group 
of Charges

• Example:
• Three point charges (+5.0, +6.0, -2.0 )C 

are initially infinitely far apart. 
• They are brought together and placed at the 

corners of an equilateral triangle. 
• Each side of the triangle has a length of 

0.50 m. 
• Determine the electric potential energy of 

the triangular group.



Reasoning

• We proceed in steps by adding charges to 
the triangle, one at a time, and then 
determine the electric potential energy at 
each step.

• Every time we add a new charge the space 
around them changes; hence, the potential 
and potential energies change.



Solution
• The order does not matter; we begin with the charge of 

+5.0 C . 
• When the charge is placed at a corner of the triangle, it has 

no electric potential energy but it does produce a potential 
of:



Solution cont.

• Now we can bring another charge in and place it at 
one of the other corners of the triangle. 

• The potential energy is given by the following:



Solution cont.

• The electric potential produced at the remaining 
empty corner is the sum of the potentials due to 
the two charges that are already in place:



Solution cont.

• When the third charge is placed at the remaining 
empty corner, its electric potential energy is:



Solution cont.

• The total potential energy is the sum of the 
potential energies calculated earlier:



Electric Fields and the Electric 
Potentials

• The relation between 
the electric field and 
the electric potential 
can be expressed the 
following way:

• For one dimensional 
cases we can simplify 
the equation and write 
the expression in the 
following manner:



Example with the Gradient

• Suppose that in a particular region of space the 
electric potential is given as:



Gradient cont.

• Determine the electric 
field

• Solution:



Solution cont.



Electric Fields and the Electric 
Potentials

• If the potential change is uniform in one direction, 
and if we wish to look at the average electric field 
between two points along this direction then we 
can further simplify the equation:



Electric Fields and the Electric 
Potentials

• The preceding equation shows that the 
electric field between two points along a 
distance s is equal to the change in potential 
along this path divided by the length of the 
path.



Example

• The plates of a capacitor are separated by a 
distance of 0.032 m, and the potential 
difference between them is -64 V. 

• Between two equipotential surfaces that are 
located between the plates there is a 
potential difference of -3.0 V. 

• Find the spacing between the two 
equipotential surfaces.



Capacitor

0.032 m

V = -64 V

V = -3 V



Solution

• The electric field 
between the capacitor 
plates is

• The spacing between 
the equipotential 
surfaces can now be 
determined:



Potential of an Infinite Line 
Charge

• Consider the infinite 
line charge we 
encountered in the 
previous chapter.

• We already know the 
electric field for this 
problem.
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Potential of an Infinite Line 
Charge

• Suppose that we wish 
to determine the 
potential difference 
from the line at points 
ra and rb.

• We integrate our 
electric field between 
those two points.



Potential of an Infinite Line 
Charge

• It is not convenient to define the potential at 
infinity to be zero for this problem. 

• Therefore, we set Vb to be zero at the point rb.



Potential for a Ring Charge

• Returning once more 
to the previous 
chapter, lets consider 
the potential for a 
uniformly charged 
ring.
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Potential for a Ring Charge

• Since the potential is a scalar we do not need to 
consider the components this time.

• We can divide our ring up into differential 
elements, dq and integrate directly.



The Potential of a Charged 
Conducting Sphere

• Consider a solid conducting sphere of 
radius R and charge q.

• Determine the potential at any point in 
space due to the sphere.



Solution

• We can get the electric 
field of the sphere by 
using Gauss’s law.

R

r1

r2



Solution cont.

• Since there are no charges inside the conducting 
sphere the electric field inside is zero.

0
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Solution cont.

• Outside the sphere the 
electric field looks like 
that of a point particle.  
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Solution cont.

• We can get the potential by integrating the electric 
field.



Solution cont.

• Solving for the potential outside the sphere we get:



Solution cont.

• At the surface of the sphere the potential is:



Compare E to V for the Sphere

• At the surface of the sphere we can write the 
following relationship for the electric field and the 
potential.



Ionization of Air

• Air becomes a 
conductor at an 
electric field of around 

mV /103 6



Ionization of Air
• Therefore, the 

maximum potential of 
a spherical conductor 
in air can be related by 
the following:

maxmax REV 

   VmVmV 462
max 103/10310  

• For a one centimeter 
sphere this is:



Chapter 24

Capacitance and Dielectrics



The Capacitance of a Capacitor

• It can be shown experimentally that the potential between 
the plates of a capacitor is directly proportional to the 
charge that is on each plate. 

• The proportionality constant is called the capacitance and 
can be expressed in the following manner:



The Capacitance of a Capacitor

• C represents the capacitance and has units 
of coulomb / volt = farad.

• The unit of a farad is an enormous 
capacitance; therefore, microfarads or 
picofarads are normally used when 
expressing capacitance in most electrical 
circuits.



Dielectrics

• If a dielectric 
substance is placed 
between the plates of a 
capacitor the 
capacitance can be 
greatly increased. 

• The expression for the 
dielectric constant is 
as follows:



Dielectrics

• In the previous equation  represents the 
dielectric constant, E is the electric field 
with the dielectric in place and Eo is the 
field before the dielectric is placed between 
the plates. 

• Since Eo is always greater than or equal to 
E then the dielectric constant is always 
greater than or equal to 1.



Another Look at the Parallel 
Plate Capacitor

• The capacitance of a 
capacitor is defined by the 
geometry of the plates and 
also by the dielectric 
constant. 

• If d is the distance 
between the plates then 
the magnitude of the 
electric field inside the 
dielectric is given by:



Another Look at the Parallel 
Plate Capacitor

• If the charge on each plate is kept constant then 
the electric field of the capacitor is:



Another Look at the Parallel 
Plate Capacitor

• The magnitude of the 
electric field between 
the plates of a parallel 
plate capacitor without 
a dielectric in place is:

• It then follows that:



Another Look at the Parallel 
Plate Capacitor

• A comparison with the expression for capacitance 
q = CV reveals that the capacitance for a parallel 
plate capacitor with a dielectric in between the 
plates is:



Example

• The capacitance of an empty capacitor is 1.2 
microfarads. The capacitor is connected to a 12 V 
battery and charged up. 

• With the capacitor connected to the battery, a slab 
of dielectric material is inserted between the 
plates. As a result, 2.6x10-5 C of additional charge 
flows from one plate, through the battery, and on 
to the other plate. 

• What is the dielectric constant of the material?



Solution

• The empty capacitor has a capacitance of 
1.2 microfarads and stores an amount of 
charge qo = CoV. 

• With the dielectric material in place, the 
capacitor has a capacitance C= Co and 
stores an amount of charge q = (Co)V.



Solution cont.

• The additional charge that the battery supplies is:



Solution cont.

• Solving for the dielectric constant, we find  that:



Example

• The capacitance of an empty capacitor is 
1.2 microfarads. The capacitor is connected 
to a 12 V battery and charged up and then 
the battery is disconnected. 

• A slab of dielectric material is inserted 
between the plates. The dielectric constant 
is 2.8 . 

• What is the potential between the plates?



Solution

• The knew capacitance is:



Solution cont.

• The charge on the plates must remain constant 
since the battery is disconnected.



Solution cont.

• The voltage must change to compensate for the 
increased capacitance.



Parallel Plate Assumptions

• The assumption that the electric field is uniform is valid in 
the central region, but not at the ends of the plates

• If the separation between the plates is small compared with 
the length of the plates, the effect of the non-uniform field 
can be ignored



A Spherical Capacitor

• Consider two concentric shells separated by 
a vacuum. The inner shell has a charge of 
+Q and a radius of ra. 

• The Outer shell has a charge of –Q on it and 
it has a radius of rb.

• Find the capacitance of the system. 



Procedure

• We use Gauss’s law to 
find the electric field 
of the spheres.

• We define our 
Gaussian surfaces for 
all the regions.

ra

rb
r



Gauss’s Law at the center

• Inside the smaller sphere there is no charge 
therefore, Gauss’s law yields zero electric 
field.



Between the spheres

• Between the two spheres Gauss’s law yields the 
following:

  
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Between the spheres cont.

• The electric field between the spheres is then:
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QE
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Outside of the Spheres

• Outside of both spheres Gauss’s law yields 
zero electric field, since the net charge 
enclosed by our Gaussian surface is zero.



Calculating the Potential

• To calculate the 
potential between the 
spheres we use the 
definition of the 
potential.   VldE





Calculating the Potential cont.

• For our problem this integral becomes:



Calculating the Capacitance

• Now we just use our definition of capacitance to 
obtain the following:



Capacitance of a Spherical 
Capacitor

• The potential 
difference will be

• The capacitance will 
be

1 1
eV k Q

b a
    
 

 e
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V k b a
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Capacitance of an Isolated 
Sphere

• An isolated sphere of 
radius r can be considered 
to be a spherical capacitor 
with and infinite radius for 
the outer sphere. 

• To find the capacitance we 
rewrite the equation for 
the capacitance of 
concentric spheres as:



Capacitance of an Isolated 
Sphere cont.

• Now we let the outer radius go to infinity.
• Calculate the capacitance per unit length.



A Cylindrical Capacitor

• Consider a long 
coaxial conductor with 
an inner radius of ra
and an outer radius of 
rb.

• A linear charge 
density  is on the 
inner radius, while –
is on the outer radius. 

ra

rb







The Electric Field

• The electric field 
between the 
conductors can be 
obtained by applying 
Gauss’s law.



The Potential

• To calculate the potential difference we use the 
definition.



The Capacitance

• To calculate the capacitance we just use the 
definition.



Capacitance of a Cylindrical 
Capacitor

• From Gauss’s Law, 
the field between the 
cylinders is
E = 2ke / r

� V = -2ke ln (b/a)
• The capacitance 

becomes

 2 ln /e

QC
V k b a

 






The Capacitance Per Unit Length

• To determine the capacitance per unit length, we 
just divide our result by the length.

 ab rrL
C

/ln
2 0





Circuit Symbols

• A circuit diagram is a 
simplified representation of 
an actual circuit

• Circuit symbols are used to 
represent the various 
elements

• Lines are used to represent 
wires

• The battery’s positive 
terminal is indicated by the 
longer line



Capacitors in Parallel

• If we hook two or more capacitors together 
in a circuit such that the electric potential 
drop across each capacitor is equal to the 
total potential difference of the circuit, the 
circuit is said to be hooked together in 
parallel.



Capacitors in Parallel

• When capacitors are 
first connected in the 
circuit, electrons are 
transferred from the 
left plates through the 
battery to the right 
plate, leaving the left 
plate positively 
charged and the right 
plate negatively 
charged



Capacitors in Parallel

C1 C2 C3 C4



Capacitors in Parallel cont.

• If the total potential difference of the circuit is 
equal to V then the capacitance of each capacitor 
is:

V
qC

V
qC

V
qC n

n  ...,,, 2
2

1
1



Capacitors in Parallel cont.

• The total capacitance 
of the circuit is the 
sum of the 
capacitances:


n

i

i
eq V

qC


n

i
ieq CC

• Then the equivalent 
capacitance for 
capacitors in parallel 
is:



Capacitors in Series

• When a battery is 
connected to the 
circuit, electrons are 
transferred from the 
left plate of C1 to the 
right plate of C2
through the battery



Capacitors in Series

• Capacitors are in series when the electric potential 
difference of the total circuit equal to the sum of 
the potential drops across each capacitor.

• The capacitance of each capacitor is then:

n
n V

qC
V
qC

V
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2
2

1
1



Capacitors in Series



Capacitors in Series

• Then the potential 
drop across each 
capacitor is:

i
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qV 

n

n
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• The equivalent 
capacitance is:



Capacitors in Series cont.

• For capacitors hooked up 
in series the reciprocal of 
the capacitance is given 
as:

• The equivalent 
capacitance for series is 
always less than or equal 
to the least capacitance in 
the series.


n

i ieq CC
11



Problem-Solving Hints

• Be careful with the choice of units
– In SI, capacitance is in farads, distance is in meters and 

the potential differences are in volts
– Electric fields can be in V/m or N/C

• When two or more capacitors are connected in 
parallel, the potential differences across them are 
the same
– The charge on each capacitor is proportional to its 

capacitance
– The capacitors add directly to give the equivalent 

capacitance



Problem-Solving Hints, cont
• When two or more capacitors are connected 

in series, they carry the same charge, but 
the potential differences across them are not 
the same
– The capacitances add as reciprocals and the 

equivalent capacitance is always less than the 
smallest individual capacitor



Equivalent Capacitance, Example

• The 1.0-F and 3.0-F capacitors are in parallel as are the 6.0-F 
and 2.0-F capacitors

• These parallel combinations are in series with the capacitors next 
to them

• The series combinations are in parallel and the final equivalent 
capacitance can be found



Nikita Problem

• Nikita encounters a problem while she is 
out on assignment. 

• She needs to destroy Red Cells com center 
by detonating a bomb. 

• However, the bomb’s detonation device 
fails. 



Nikita Problem

• Nikita must hook 
together 3 capacitors 
such that a total 
capacitance of 40 F 
is produced. 

• If the first two 
capacitors are 100 F 
each, how large is the 
third capacitor?



Solution partial

• If Nikita connects the 
capacitors properly 
she will get a 
capacitance of 40 f.

• The capacitors must be 
hooked together in 
series to create a total 
capacitance of 40 f.



Capacitors with Dielectrics

• A dielectric is a nonconducting material 
that, when placed between the plates of a 
capacitor, increases the capacitance
– Dielectrics include rubber, plastic, and waxed 

paper
• For a parallel-plate capacitor, C = κCo = 
κεo(A/d)
– The capacitance is multiplied by the factor κ

when the dielectric completely fills the region 
between the plates



Dielectrics, cont

• In theory, d could be made very small to create a 
very large capacitance

• In practice, there is a limit to d
– d is limited by the electric discharge that could occur 

though the dielectric medium separating the plates
• For a given d, the maximum voltage that can be 

applied to a capacitor without causing a discharge 
depends on the dielectric strength of the material



Dielectrics, final

• Dielectrics provide the following 
advantages:
– Increase in capacitance
– Increase the maximum operating voltage
– Possible mechanical support between the plates

• This allows the plates to be close together without 
touching

• This decreases d and increases C





Types of Capacitors – Tubular 

• Metallic foil may be 
interlaced with thin sheets 
of paper or Mylar

• The layers are rolled into a 
cylinder to form a small 
package for the capacitor



Types of Capacitors – Oil Filled

• Common for high-
voltage capacitors

• A number of 
interwoven metallic 
plates are immersed in 
silicon oil



Types of Capacitors –
Electrolytic

• Used to store large 
amounts of charge at 
relatively low voltages

• The electrolyte is a 
solution that conducts 
electricity by virtue of 
motion of ions 
contained in the 
solution



Types of Capacitors – Variable
• Variable capacitors consist 

of two interwoven sets of 
metallic plates

• One plate is fixed and the 
other is movable

• These capacitors generally 
vary between 10 and 500 
pF

• Used in radio tuning 
circuits



Electric Dipole

• An electric dipole consists of 
two charges of equal 
magnitude and opposite signs

• The charges are separated by 
2a

• The electric dipole moment
(p) is directed along the line 
joining the charges from –q
to +q



Electric Dipole, 2

• The electric dipole moment has a magnitude 
of p = 2aq

• Assume the dipole is placed in a uniform 
external field, E
– E is external to the dipole; it is not the field 

produced by the dipole
• Assume the dipole makes an angle θ with 

the field



Electric Dipole, 3

• Each charge has a 
force of F = Eq acting 
on it

• The net force on the 
dipole is zero

• The forces produce a 
net torque on the 
dipole



Electric Dipole, final

• The magnitude of the torque is:
= 2Fa sin θ pE sin θ

• The torque can also be expressed as the cross 
product of the moment and the field:  
 = p x E

• The potential energy can be expressed as a 
function of the orientation of the dipole with the 
field: 
Uf – Ui = pE(cos θi – cos θf
U = - pE cos θ = - p · E



Polar vs. Nonpolar Molecules

• Molecules are said to be polarized when a 
separation exists between the average position of 
the negative charges and the average position of 
the positive charges

• Polar molecules are those in which this condition 
is always present

• Molecules without a permanent polarization are 
called nonpolar molecules



Water Molecules

• A water molecule is an 
example of a polar 
molecule

• The center of the 
negative charge is near 
the center of the 
oxygen atom

• The x is the center of 
the positive charge 
distribution



Polar Molecules and Dipoles

• The average positions of the positive and 
negative charges act as point charges

• Therefore, polar molecules can be modeled 
as electric dipoles



Induced Polarization

• A symmetrical molecule has 
no permanent polarization (a)

• Polarization can be induced 
by placing the molecule in an 
electric field (b)

• Induced polarization is the 
effect that predominates in 
most materials used as 
dielectrics in capacitors



Dielectrics – An Atomic View

• The molecules that 
make up the dielectric 
are modeled as dipoles

• The molecules are 
randomly oriented in 
the absence of an 
electric field



Dielectrics – An Atomic View, 2

• An external electric 
field is applied

• This produces a torque 
on the molecules

• The molecules 
partially align with the 
electric field



Dielectrics – An Atomic View, 3

• The degree of alignment of the molecules 
with the field depends on temperature and 
the magnitude of the field

• In general,
– the alignment increases with decreasing 

temperature
– the alignment increases with increasing field 

strength



Dielectrics – An Atomic View, 4

• If the molecules of the dielectric are 
nonpolar molecules, the electric field 
produces some charge separation

• This produces an induced dipole moment
• The effect is then the same as if the 

molecules were polar



Dielectrics – An Atomic View, 
final

• An external field can  
polarize the dielectric 
whether the molecules are 
polar or nonpolar

• The charged edges of the 
dielectric act as a second 
pair of plates producing an 
induced electric field in the 
direction opposite the 
original electric field



Induced Charge and Field

• The electric field due to the 
plates is directed to the right 
and it polarizes the dielectric

• The net effect on the dielectric 
is an induced surface charge 
that results in an induced 
electric field

• If the dielectric were replaced 
with a conductor, the net field 
between the plates would be 
zero



Geometry of Some Capacitors



Capacitors

Energy Stored by a Capacitor



Energy Stored

• Suppose we wish to 
charge a capacitor.

• The work done 
moving a differential 
amount of charge to 
the capacitor at a 
potential of V is:

• If we rewrite the 
potential in terms of the 
capacitance we get:



Energy Stored cont.

• We now integrate to get the total work done in 
moving the charges.



Energy Stored cont.

• If we define the potential energy of an uncharged 
capacitor to be zero, then W is equal to the 
potential energy of the charged capacitor.



Energy

• The energy stored by a capacitor is equal to 
the work done in placing charges on the 
plates of the capacitor. 

• The work is equal to the average potential 
difference multiplied by the charge. 

• Since the average potential is half of the 
final potential, then it follows that:



Energy of a Capacitor
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Example
• Two capacitors are identical, except that 

one is empty and the other is filled with a 
dielectric of 4.50. 

• The empty capacitor is connected to a 12.0-
V battery. 

• What must the potential difference across 
the plates of the other capacitor be such that 
it stores the same amount of electrical 
energy as the empty capacitor?



Solution
• The energy is the same 

for both capacitors. 
• The only difference is 

the potentials and the 
dielectric constant. 

• Therefore, we can 
write the following:


