
Chapter 21

Electric Fields



The Origin of Electricity

• The electrical nature of matter is inherent in 
the atoms of all substances. 

• An atom consists of a small relatively 
massive nucleus that contains particles 
called protons and neutrons. 



The Origin of Electricity cont.

• A proton has a mass of 1.673x10-27 kg, 
while a neutron has a slightly greater mass 
of 1.675x10-27 kg. 

• Surrounding the nucleus is a diffuse cloud 
of orbiting particles called electrons. An 
electron has a mass of 9.11x10-31 kg.



The Origin of Electricity cont.

• Like mass , electric charge is an intrinsic 
property of protons and electrons, and only 
two types of charge have been discovered, 
positive and negative. 

• The proton's charge is exactly equal to the 
electron's.



The Fundamental Unit of Charge

• The unit for measuring the magnitude of an 
electric charge is the coulomb. The charge of the 
electron is equal to:

Ce 191060.1 



Example

• How many electrons are there in one 
coulomb of negative charge?



Solution

• The number of electrons is just equal to the total 
charge divided by the charge of one electron.
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The Conservation of Charge:

• There are several quantities that are 
conserved in nature. One such quantity is 
electric charge.

• The conservation of charge states that 
during any process, the net electric charge 
of an isolated system remains constant.



Electric Conductors and 
Insulators

• Electrical conductors are substances, such 
as metals, which allow electrons to move 
through them very easily. Examples of good 
conductors are: copper, silver, and gold.

• Materials that do not allow the 
movement of electrons easily through them 
are called insulators. Examples of insulators 
are: rubber, plastic, and glass.



The Differences

• The difference between electrical conductors and 
insulators is related to their atomic structure. 

• In a good conductor, valence electrons become 
detached from a parent atom and wander more or 
less freely throughout the material, belonging to 
no one particular atom. 

• In insulators there are very few electrons that are 
free to move throughout the material.



Coulomb’s Law

• The electrostatic force that stationary 
charged objects exert on each other depends 
on the amount of charge on the objects and 
the distance between them. 

• The physicist Charles Augustin Coulomb 
formulate the law for amount of force 
between two charges.



Coulomb’s Law

• Charles Coulomb 
measured the 
magnitudes of electric 
forces between two 
small charged spheres

• He found the force 
depended on the 
charges and the 
distance between them



Coulomb’s Law, 2

• The electrical force between two stationary 
charged particles is given by Coulomb’s Law

• The force is inversely proportional to the 
square of the separation r between the 
particles and directed along the line joining 
them

• The force is proportional to the product of the 
charges, q1 and q2, on the two particles



Coulomb’s Law, 3

• The force is attractive if the charges are 
of opposite sign

• The force is repulsive if the charges are 
of like sign

• The force is a conservative force



Point Charge

• The term point charge refers to a 
particle of zero size that carries an 
electric charge
– The electrical behavior of electrons and 

protons is well described by modeling them 
as point charges



Coulomb’s Law cont.

• This law is known as 
Coulomb's law and is 
stated as:
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Coulomb’s Law cont.

• Here the q's represent two charges, r is the 
distance separating them, and k is a constant 
equal to 8.99x109 N m2 / C2 . 

• The electrostatic force is directed along the 
line joining the charges, and it is attractive 
if the charges have unlike signs and 
repulsive if the charges have like signs.



A Final Note about Directions

• The sign of the product of q1q2 gives the 
relative direction of the force between q1
and q2

• The absolute direction is determined by 
the actual location of the charges



Example

• Two objects, whose charges are +1.0 and -
1.0 C, are separated by 1.0 km. 

• Compared to 1.0 km the sizes of the objects 
are insignificant. 

• Find the magnitude of the attractive force 
that either charge exerts on the other.



Solution

• Using coulomb’s law and substituting in for the 
charges and the distance separating them, we can 
determine the magnitude of the force between 
them.



Example

• In the Bohr model of the hydrogen atom, 
the electron (-e) is in orbit about the nuclear 
proton (+e) at a radius of r = 5.29x10-11 m. 

• Determine the speed of the electron, 
assuming the orbit is circular.



Solution

• The electron experiences an electrostatic force of 
attraction because of the proton, and the 
magnitude of this force is:



Solution cont.

• This force must be equal to the centripetal force 
that holds the electron in its orbit. 

• Therefore, we can use the equation for centripetal 
force to determine the speed of the electron.



Example

• Three point charges 
are on a line that runs 
along the x axis in a 
vacuum. 

• The charge on particle 
A is –4 C, the charge 
on particle B is 3 C, 
and the charge on 
particle C is –7 C. 

0.02m 0.15m
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Example cont.

• Determine the magnitude and direction of 
the net electrostatic force on particle B.



Solution

• The magnitudes of the forces are:



Solution cont.

• We can find the magnitude of the force between 
particles B and C in a similar manner.



Solution cont.

• Since FBA points in the negative x direction, and FBC points 
in the positive x direction, the net force, F, is given below.

• The direction of the force is along the positive x direction.



The Electric Field

• Michael Faraday developed the concept of 
the electric field. 

• According to Faraday, a charge creates an 
electric field about it in all directions. 

• In general, electric field lines are directed 
away from the positive charge and toward 
the negative charge.



Electric Field Defined

• The electric field that 
exists at a point in 
space is the 
electrostatic force 
experienced by a small 
positive test charge 
placed at that point 
divided by the charge 
itself. oq
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Units of an Electric Field

• The electric field is a vector quantity, and its 
direction is the same as the direction of the force 
on the positive test charge. 

• The unit of electric field is Newtons per coulomb 
(N/C).

• It is the surrounding charges that create an electric 
field at a given point. 

• Any positive or negative charge placed at the point 
interacts with the field, and as a result experiences 
a force.



Example

• There is an isolated point charge of +15 
micro-coulombs in a vacuum. 

• Using a test charge of +0.80 micro-
coulomb, determine the electric field at a 
point which is 0.20 m away in the positive x 
direction.



Solution

• Following the definition of the electric field, we 
place the test charge at the point, determine the 
magnitude of the force acting on the test charge, 
and then divide the force by the test charge.



Solution cont.

• The magnitude of the electric field can now be 
obtained.

• The electric field points in the same direction as 
the force that the test charge experienced.



Example

• Can there be places where the magnitude of 
the electric field is zero?

• Two positive charges, q1 = 16 C and q2 = 
4.0 C , are separated in a vacuum by a 
distance of 3.0 m. 

• Find the spot on the line between the 
charges where the net electric field is zero.



Reasoning

• Between the charges the two field 
contributions have opposite directions, and 
the net electric field is zero at the place 
where the magnitude of E1 equals that of E2.



Solution

• At the point P the magnitude of the electric fields 
created by each charge must be equal.



Solution cont.

• If we let the distance to the point of zero electric 
field be d, from the first charge then the distance 
of that point to the second charge is 3.0m – d.



Solution cont.

• There are two possible values for d. The 
value of 6.0 m corresponds to a location off 
to the right of both charges, where the 
magnitudes are equal but the directions are 
the same so they do not cancel. 

• The value of 2.0 m corresponds to the place 
where the electric field is zero.



Example
• Two point-charges, one is - 25 C and the 

other is 50 C, are separated by a distance 
of 10.0 cm. 

• Determine the net electric field at a point 
that is 2.0 cm from the negative charge. 

• If an electron is placed at this point what 
will be its initial acceleration?



Solution

• The net electric field is equal to the sum of the two 
electric fields. 

• The direction of the electric field generated by the 
negative charge at the point shown is to the left. 



Solution cont.

• The direction of the electric field at this point due 
to the positive charge is also to the left. 

• Therefore, the net electric field is given by the 
following:



Solution cont.

• The acceleration of the electron can be determined 
from Newton’s second law.



The Electric Field Inside a 
Conductor

• In conducting materials such as copper or 
iron, electric charges move readily in 
response to the forces that electric fields 
exert. 

• This characteristic property of conductors 
has a major effect on the electric field that 
can exist within and around them.



E-Field Inside a Conductor cont.

• Suppose that a piece of copper carries a number of 
excess electrons somewhere within it. 

• Each electron would experience a force on it due 
to the other electrons and they would then move in 
response to the force. 

• Once static equilibrium is reached all the excess 
charges would be on the surface of the copper.



E-Field Inside a Conductor cont.

• 1. At equilibrium, any excess charge 
resides on the surface of a conductor.

• 2. At equilibrium, the electric field at 
any point within a conductor is zero.

• 3. The conductor shields any charge within 
it from electric fields created outside 
the conductor.



A Charged Particle in an Electric 
Field

• Consider a set of two parallel conducting plates 
with a constant electric field between them.

• The electric field is in the positive y-direction and 
an electron enters the region with an initial 
velocity of v0 in the x-direction.

• Ignore gravity, determine the trajectory of the 
electron.



F
E



Solution

• Newton’s equations of motion yield the following:



Solution cont.

• We can use Coulomb’s law with Newton’s second 
law to calculate the acceleration in the y-direction.



Solution cont.

• If we substitute this result back into our previous 
relation for y we get the following:
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The Electric Field of a Ring

• Suppose we have a ring-shaped conductor 
that is centered on the x-axis.

• If the ring has a total charge of Q that is 
uniformly distributed about its 
circumference, find the electric field at a 
point that lies on the x-axis a distance x 
from the origin.
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Solution

• First we divide the 
ring up into 
infinitesimal pieces 
and then we can 
consider each piece as 
a point charge.

• The electric field 
created by each piece 
is the following:



Solution cont.

• First we notice that the y-components sum to zero.
• The magnitude of the component along the x-axis 

is then:



Solution cont.

• To find the total x-component of the electric field 
we integrate the previous equation.



Solution cont.

• Since the distance x does not vary as we integrate 
around the loop then the only variable in the 
integral is dQ.

• Therefore, the electric field becomes:



A Uniformly Charged Disk

• Suppose that we have a disk of radius R 
with a uniform positive surface charge 
density of  on its surface.

• What is the electric field at a distance x 
from the origin along the x-axis?
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A Uniformly Charged Disk

• Our differential charge is the charge density 
multiplied by the area of our ring.

• The area of the ring is the differential width dr 
times the circumference.



A Uniformly Charged Disk

• The ring in this 
problem is similar to 
the previous problem.

• Therefore, only the x-
component of the 
electric field is 
present.



A Uniformly Charged Disk

• To find the total electric field we integrate over r 
from zero to R.



A Uniformly Charged Disk

• If we substitute z = x2 + r2 into our integral it 
becomes:



A Uniformly Charged Disk

• If we simplify we get the following:



An Infinite Sheet Charge

• Suppose we now let the radius of the disk go to infinity, 
while the surface charge density decreases.

• The second term in parentheses then goes to zero.
• The electric field then becomes:



Amount of Charge in or on a 
Small Volume, Surface, or length

• For the volume: dq = ρ dV
• For the surface: dq = σ dA
• For the length element: dq = λ dℓ



Problem Solving Hints

• Units: when using the Coulomb constant, ke, 
the charges must be in C and the distances in 
m

• Calculating the electric field of point 
charges: use the superposition principle, find 
the fields due to the individual charges at the 
point of interest and then add them as vectors 
to find the resultant field



Problem Solving Hints, cont.

• Continuous charge distributions: the 
vector sums for evaluating the total electric 
field at some point must be replaced with 
vector integrals
– Divide the charge distribution into infinitesimal 

pieces, calculate the vector sum by integrating 
over the entire charge distribution

• Symmetry: take advantage of any symmetry 
to simplify calculations



Motion of Particles, cont

• Fe = qE = ma
• If E is uniform, then a is constant
• If the particle has a positive charge, its 

acceleration is in the direction of the field
• If the particle has a negative charge, its 

acceleration is in the direction opposite the 
electric field

• Since the acceleration is constant, the 
kinematic equations can be used



Electron in a Uniform Field, 
Example

• The electron is projected 
horizontally into a uniform 
electric field

• The electron undergoes a 
downward acceleration
– It is negative, so the 

acceleration is opposite E

• Its motion is parabolic 
while between the plates



The Cathode Ray Tube (CRT)

• A CRT is commonly used to obtain a 
visual display of electronic information 
in oscilloscopes, radar systems, 
televisions, etc.

• The CRT is a vacuum tube in which a 
beam of electrons is accelerated and 
deflected under the influence of electric 
or magnetic fields



CRT, cont

• The electrons are 
deflected in various 
directions by two sets 
of plates

• The placing of charge 
on the plates creates 
the electric field 
between the plates 
and allows the beam 
to be steered



Electric Dipole

• Consider the situation where two charges of 
equal but opposite signs are held a fixed 
distance apart.

• If q is placed at d/2 along the y-axis and –q
is at -d/2 from the origin, then determine the 
electric field at a distance y along the y-axis.
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Electric Dipole

• The electric field is:



• Rearranging with a common denominator yields:



Electric Dipole

• If the distance between 
the charges is small 
compared to the 
distance along the y-
axis then we get:



Chapter 22

Gauss’s Law



Gauss’s Law

• The electric flux is represented by the 
number of electric field lines penetrating 
some surface. 

• When the surface being penetrated encloses 
some net charge, the number of lines that go 
through the surface is proportional to the net 
charge within the surface.



Gauss’s Law cont.

• The product of the electric field E, and a vector-
surface area A is called the electric flux. The units 
for electric flux are Nm2/C. The flux can be 
expressed as:



Gauss’s Law cont.

• The vector A has a magnitude equal to the area 
and a direction that is perpendicular to that area.

• By the definition of the dot product we can write 
the flux in terms of the angle between E and A.



Gauss’s Law cont.

• If we wrap the surface completely around 
the charges that are responsible for the 
electric field, then we will create a volume 
which encloses all our charges.



Gauss’s Law cont.

• If we now look at a small infinitesimal area of this 
volume the amount of flux that passes through this 
area is given by the following:



Gauss’s Law cont.

• If we want to know the total flux through the 
surface enclosing our charges we need to integrate 
the previous equation:



Gauss’s Law cont.

• The previous equation is known as Gauss's 
Law and the surface that encloses the 
charges is known as a Gaussian surface.



Gauss’s Law cont.

• If we know the number and magnitude of the 
enclosed charges then Gauss's Law becomes:

• The constant o is the permittivity of free space 
and has a value of 8.854 x 10-12 C2 / N m2.



Example

• Consider a uniform electric field E oriented 
in the x direction. 

• Find the net electric flux though the surface 
of a cube of edges L oriented with its faces 
perpendicular to the x, y, and z axis.



Solution

• The net flux can be evaluated by summing up the fluxes 
through each face of the cube. 

• The faces at the top and bottom of the cube, as well as the 
two that have a normal vector perpendicular to the x axis, 
have zero flux through them since:



Solution cont.

• The net flux through the remaining two faces is



Solution cont.

• After integrating we obtain the following for each 
of the remaining faces.



Solution cont.

• If we now sum up all the contributions to the total 
flux through the cube we get the following:



Example

• Consider a thin spherical shell of radius R. 
A positive charge Q is spread uniformly 
over the shell. 

• Find the magnitude of the electric field at 
any point a) outside the shell and b) inside 
the shell.



Solution

• From our definition of 
Gauss’s law we know 
that the amount of 
charge enclosed by 
our Gaussian surface 
is proportional to the 
integral over the 
Gaussian surface of 
the electric field.



Solution cont.

• We choose a sphere as our Gaussian surface. Thus, the 
electric field is everywhere perpendicular to the surface. 

• If we let r represent the radius of our Gaussian surface then 
the flux for r > R is:



Solution cont.

• Then the electric field outside the sphere is the 
same as that for a point charge.



Solution cont.

• To find the magnitude of the electric field inside 
the charged shell, we select a spherical Gaussian 
surface that lies inside the shell. According to 
Gauss's Law:



Solution cont.

• But the charge enclosed by the Gaussian 
surface is zero; therefore, the electric field 
is zero inside the charged shell.



The Parallel Plate Capacitor

• A parallel plate capacitor is a device that consists 
of two parallel metal plates. In our example  each 
circular plate has an area "A". 

• A charge + q is spread uniformly over one plate, 
while a charge -q is spread uniformly over the 
other plate.

• In the region between the plates and away from 
the edges, the electric field points from the 
positive plate to the negative plate and is 
perpendicular to both.



Parallel Plate Capacitor cont.

• Using Gauss's Law we can determine the 
electric field between the plates.

• For our Gaussian surface we choose a 
cylinder with its length perpendicular to the 
plates of the capacitor.

• One end of the cylinder is in the plate and 
the other end is positioned between the 
plates.





Parallel Plate Capacitor cont.

• The sides of the cylinder do not contribute since 
no E-field passes through them.

• The only contribution is due to the end of the 
cylinder.



Parallel Plate Capacitor cont.

• We now let our Gaussian surface enclose the 
entire surface of the plate.

• Our flux is then just the electric field times the 
area (A) of the plate.



Parallel Plate Capacitor cont.

• The charge enclosed by our Gaussian surface can 
be defined in terms of a surface charge density .

•  is the charge per unit area on the plates of the 
capacitor. Therefore,  is:



Parallel Plate Capacitor cont.

• Substitution of our 
previous equation into 
our Gauss law 
equation for a parallel 
plate capacitor yields:



Equivalence of Gauss‘s and 
Coulomb's Laws

• Suppose we have a point charge q and we 
wish to use Gauss' law to determine the 
electric field produced by this charge. 

• We could construct a Gaussian sphere, with 
radius r, that encloses q with the charge 
resting at the center of the sphere.



Equivalence of Laws cont.

• The electric field on the surface of the sphere is 
independent of position and can therefore be 
pulled out of the integral.

• Then according to Gauss' law:



Equivalence of Laws cont.

• Since the electric field was independent of 
direction the integral is only the area of a sphere.



Equivalence of Laws cont.

• If we solve for the electric field we see that we 
obtain the same result as if we had used Coulomb.

• Therefore, we state their equivalence.



The Electric Field of an Infinite 
Line Charge

• Consider an infinite 
line charge with a 
uniform charge 
distribution of  along 
its length.
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The Electric Field of an Infinite 
Line Charge

• We choose for our 
Gaussian surface a 
cylinder of radius r.

• The electric field is 
perpendicular to the 
sides of the cylinder 
and parallel to the 
ends.

+

+

+

+
+

+
+
+
+

+



An Infinite Line Charge

• We now integrate to 
get the flux.

• We note that the ends 
of the cylinder do not 
contribute since the 
electric field through 
them is zero.



An Infinite Line Charge

• Solving the integral 
gives the flux.

• However, if we wish 
solve for the electric 
field in terms of the 
charge density then we 
make note of the 
following:



An Infinite Line Charge

• Then applying Gauss’s law we get that the electric 
field a distance r from an infinite line charge is:


