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EXAMPLE: ELECTRICAL ANALOG TO THE MECHANICAL VIBRATIONS
In the class, we discussed, how different electrical components such as inductors, capacitors and resistors

as well as external voltage sources are analog to the components of the mechanical vibrations such as:
restoring forces, masses, and resistive forces and driving forces.

Using this similarity, we have evaluated the oscillations in LCR circuits. Let’s do one more example.
Example A mass m1 driven by a sinusoidal force whose frequency is ω. The mass m1 is attached to a

rigid support by a spring of force constant k and slides on a second mass m2. The frictional force between
m1 andm2 is represented by the damping parameter b1. and the frictional force betweenm2 and the support
is represented by b2. Construct the electrical analog of this system.

We first need to write down the equation of motion. Let’s take the coordinate of the mass m1 as x1, and
for mass m2 as x2.

The forces experience by the mass m1:

• restoring force from the spring −kx1

• The damping force from the m1 m2 interface: −b1(ẋ1 − ẋ2)

• and the driving force FCosωt

The forces experience by the mass m2:

• the damping from the m1 and m2 interface

• the damping force from the horizontal surface

So from our previous knowledge, we can write the equations of motion as:

m1ẍ1 = −kx1 − b1(ẋ1 − ẋ2) + FCosωt (1)

m2ẍ2 = −b2ẋ2 − b1(ẋ2 − ẋ1) (2)

Let’s put all the electrical analog as,

m1 → L1;

m2 → L2;

k → 1

C
b1 → R1

b2 → R2

x1 → q1

x2 → q2



Let’s simply convert the above two equations of motion with these electrical analogs.

L1q̈1 = − 1

C
q1 −R1(q̇1 − q̇2) + ε0Cosωt (3)

L2q̈2 = −R2ẋ2 −R1(q̇2 − q̇1) (4)

Let’s re-write this equations:

L1
dI1
dt

+
1

C
q1 +R1(I1 − I2) = ε0Cosωt (5)

L2
dI2
dt

+R2I2 +R1(I2 − I1) = 0 (6)

We can out these circuit elements together to form the following circuit.

PRINCIPLE OF SUPERPOSITION
In the previous lecture, we have discussed the harmonic oscillator in the presence of a sinusoidal driving

force. The equation we have solved is :(
d2

dx2
+ 2β

d

dx
+ ω2

0

)
x(t) = ACosωt (7)

This is a linear differential equation. In fact,w e can write it as,

Lx(t) = F (t) (8)

where L is a linear operator. What that means is If we have two equations like:

Lx1(t) = F1(t) (9)

and

Lx2(t) = F2(t) (10)

We can write this as:
L [x1(t) + x2(t)] = F1(t) + F2(t) (11)

In fact, we can generalize this equation as:

L [α1x1(t) + α2x2(t)] = α1F1(t) + α2F2(t) (12)

We can write the force function as a linear superposition of a series of functions as: Fext =
∑
n αnFn(t),

where each of these Fn components satisfy the differential equations as:

Lαnxn(t) = αnFn(t) (13)

That is, when the force is a linear superposition of a force components, then the solution to the total
differential equation can be written as a linear superposition of xn(t).



x(t) =
∑
n

αnxn(t) (14)

That means, when we can write the total force on the SHO problem,we can solve for x(t) for each force
component and the combine them to find the x(t) as shown above.

If we have a periodic force function: such that F (t) = F (t + T ), we can write the force function in
terms of a Fourier series. For instance we can write the force as:

F (t) =
∑
n

αnCos(ωnt− φn) (15)

We can solve for the steady state for each individual force component and then write the complete steady
state solution as:

x(t) =
∑
n

αn/m√
(ω2

0 − ω2
n)

2 + 4ω2
nβ

2
Cos(ωnt− φn − δn) (16)

where δn is the phase difference between nth force component and its response:

δn = Tan−1
(

2ωβ

ω2
0 − ω2

n

)
(17)

Now, given a complicated force function, if you can divide it to components, by the method of linear super-
position, we can solve for the resultant motion.

NON-SINUSODIAL PERIODIC FUNCTIONS
We consider the case of a force which varies as any arbitrary periodic function. According to Fourier

theorem, any periodic function can be represented in terms of a series of sinusoidal functions.
Which means:

F (t) =
1

2
a0 +

∞∑
n=1

(anCosnωt+ bnSinnωt) (18)

where,

an =
2

τ

∫ ∞
0

F (t′)Cosnωt′dt′ (19)

bn =
2

τ

∫ ∞
0

F (t′)Sinnωt′dt′

Once we know the coefficients an and bn, we know the Fourier expansion of the force, then we can use
the linear superposition to solve the problem,

Sawtooth Driving Force on the Damped Harmonic Oscillator
A sawtooth driving force function is applied on the SHO with a damping force, Explain how you would

solve the equation of motion for this problem.
F (t) can be explained as:

F (t) = A
t

τ
− τ/2 < t < τ/2 (20)

Saw tooth function is a odd function. Now that Cosine function is an even function, all the an coefficients
go to zero. Sin function is an odd functions, so that bn coefficients are non-zero.



Let’s work on and find out the bn coefficients.

bn =
2

τ

∫ τ/2

−τ/2
F (t′)Sin nωt′dt′

=
2

τ

∫ τ/2

−τ/2
A
t′

τ
Sin nωt′dt′

=
2A

τ2

∫ τ/2

−τ/2
t′Sin nωt′dt′

(21)

In order to solve the last equation, we can use the integration by parts
∫
udv = uv −

∫
vdu

Let’s re-write the eq.(21) as:

bn =
2A

τ2
(
−1
nω

)

∫ τ/2

−τ/2
t′dCosnωt′ (22)

Using the integration by parts:

bn =
2A

τ2
(
−1
nω

)

[
t′Cosnωt′|τ/2−τ/2 −

∫
Cos nωt′dt′

]
(23)

bn =
2A

τ2
(
−1
nω

)

[
t′Cosnωt′|τ/2−τ/2 −

Sin nωt′

nω
|τ/2−τ/2

]
(24)

Now we have both τ and ω in these equations. Let’s substitute τ = 2π/ω

bn =
2Aω2

(2π)2
(
−1
nω

)

[
t′Cosnωt′|π/ω−π/ω −

Sin nωt′

nω
|π/ω−π/ω

]
(25)

The second term in the parenthesis goes to zee because Sin nπ = 0, which gives:

bn =
2Aω2

(2π)2
(
−1
nω

)
[
t′Cosnωt′|π/ω−π/ω

]
(26)

bn =
2Aω2

(2π)2
(
−1
nω

)

[
2π

ω
Cos nπ

]
(27)

By simplifying, we get,

bn =
A

nπ
(−1)(n+1 (28)

Now we can write the Saw tooth force function as:

F (t) =
A

π

[
Sin ωt− 1

2
Sin 2ωt+

1

3
Sin3ωt− . . .

]
(29)

If the damped HarmoniNow we have to solve a series of Newton’s equations of motion which looks like:

ẍn + 2βẋn + ω2
0xn =

A

nπ
(−1)(n+1Sin nωt (30)

Each one of these equation is no different from the forced Harmonic Oscillator problem we did in class,
which takes the form ẍ+ 2βẋ+ ω2

0x = F0Cosωt, for which we know the solution. Which means, we can
easily solve for each xn and then, the total solution can be obtained as x(t) =

∑
n xn(t)

In the website, there is a cdc player, where you can observe the Fourier expansion of Sawtooth function
with different components,. Play with it and get an idea. Following shows few snapshots from it.



Figure 1: The Fourier Expansion of Sawtooth function. The figure shows one, Two, FIve and 150 Fourier
Components in the Expansion, We see the overshooting at the edge, in all orders of expansions, which is
known as the Gibbs phenomenon


