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Equivalance of Lagrange’s and Newton’s Equations

We have solved a number of problems with both Newtonian Mechanics and Lagrange’s Dynamics. In
some cases, we solved the same problem with both the methods. And we shoed that both methods idld the
same result. In this class, we are going to prove this in general, The result of Newton;s equations is identical
to those obtained from the Lagrange’s Dynamics.

Let’s first prove this for Rectangular coordinates.

RECTANGULAR COORIDNATES
We can apply the Euler-Lagrangean Equations as:
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We can write this collectively as:
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Here 1 =z, x5 =y, and x3 = 2.

We are going to show that the Lagrange’s equations yield the same results as the Newton’s Equations.
Let’s start with the Lagrange’s Equations.
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For this particular case: T' = T'(¢;) and U = U(z;)
This yields:
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Since we ware trying to relate the Lagrangean Dynamics to Newton’s Equations, let’s relate the potential
energy and the force.
For a conservative field:
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By combining the above equations, we get,
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Now let’s express the kinetic energy in terms of the coordinates:
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By putting it in the eq.(9),we get,
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which gives,

Here,we proved that the Lagrange’s equation and Newton’s Equation yield the same result. But we did it
for the specific case of rectangular equations. Now we are going to prove it for the general case. The system
motion is explained by a set of generalized coordinates.

NEWTON’S EQUATIONS AND THE LAGRANGE’S EQUATION USING GENERALIZED COORDINATES
From the previous section, we know that we need to differentiate the Kinetic energy and the potential

energy with respect to the generalized coordinate. Let’s start writing the Kinetic Energy interns of the

generalized coordinates.
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Let’s differentiate T with respect to g;,
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Now let’s take the time derivative of this:
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In writing the Tast equation, we used
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Let’s consider the last term of the above equation:
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Putting eq(21) and eq.(22) together,
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Now let’s consider the work:
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where (@); is the generalized force:
By combining eq.(24) and eq.(25):
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We also can relate the generalized force to the potential energy as ); = —g—g
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For the conservative fields, the potential energy does not depend on the generalized velocity:



So we can write:
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We proved the Lagrangean Equations utilizing the Newton’s equations.
Alright, we dealt with lot of proofs. Let’s get back to more problems.

EXAMPLE

Two blocks of mass M are connected by an extension less, uniform string of length {. One block is
placed on a smooth horizontal surface, and the other block hangs over the side, the string passes over a
frictionless pulley. ascribe the motion of the system (mass of the string is negligible)




