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Canonical Equations of Motion and Hamiltonian Dynamics In the last two lectures, we define a new
quantity Hamiltonian as :

H =
∑
j

q̇jpj − L (1)

For the case where the transformation equations does not have any explicit time dependance, we figured
that the above quantity can be written as:

H = T + V (2)

And also we have proved the canonical equations of motion as:

q̇j =
∂H

∂pj
(3)

−ṗj =
∂H

∂qj
(4)

EXAMPLE
Use both the Lagrangean method and the Hamiltonian method to find the equations of motion for a

spherical pendulum of mass m and length b.

The motion of the spherical pendulum can be explained by (r, θ, φ), spherical polar coordinates.
In spherical polar coordinates:

v2 = ṙ2 + r2θ̇2 + r2Sin2θφ̇2 (5)

with the constraint r = b.
So the Kinetic Energy becomes:

T =
1

2
m
(
b2θ̇2 + b2Sin2θφ̇2

)
(6)

and the Potential Energy



V = −mgbCosθ (7)

So the first step is to write the Lagrangean:

L = T − V (8)

L =
1

2
m
(
b2θ̇2 + b2Sin2θφ̇2

)
+mgbCosθ (9)

Let’s first solve this problem using Lagrngean method

Euler-Lagrangean Equation w.r.t. θ

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

nonumber
1

2
mb22SinθCosθφ̇2 −mgbSinθ − d

dt
mb2θ̇ = 0 (10)

θ̈ − SinθCosθφ̇2 + g

b
Sinθ = 0 (11)

Euler-Lagrangean Equation w.r.t. φ

∂L

∂φ
− d

dt

∂L

∂φ̇
= 0

d

dt
mb2Sin2θφ̇ = 0

mb2Sin2θφ̇ = Constant (12)

We can solve for θ(t) and φ(t) using the equations (11) and (12)
Now let’s solve the same problem using the Canonical equations.

Using Canonical Equations
Since in this problem, the transformation equations do not have any explicit time dependance,

H = T + V

H =
1

2
m
(
b2θ̇2 + b2Sin2θφ̇2

)
−mgbCosθ (13)

Now we have written the Hamiltonian, and then we need to convert the variables:
Using the eq. (8),

pθ =
∂L

∂θ̇
= mb2θ̇ → θ̇ =

pθ
mb2

(14)

pθ =
∂L

∂θ̇
= mb2Sin2θφ̇ → φ̇ =

pφ
mb2Sin2θ

(15)

Substituting eq. (14) and (15), in eq. (13), we get:



H =
mb2

2

( pθ
mb2

)2
+
mb2Sin2θ

2

( pφ
mb2Sin2θ

)2
−mgbCosθ (16)

H =
p2θ

2mb2
+

p2φ
2mb2Sin2θ

−mgbSinθ (17)

Now we can apply the Canonical Equations of motion:
Each coordinate has 2 equations:
w.r.t. θ

θ̇ =
∂H

∂θ
=

2pθ
2mb2

→ pθ = mb2θ̇ (18)

ṗθ = −
∂H

∂θ
= −

(
p2φ

2mb2
−2
Sin3θ

Cosθ +mgbSinθ

)
=

p2φCosθ

mb2Sin3θ
−mgbSinθ (19)

φ̇ =
∂H

∂φ
=

2pφ
2mb2Sin2θ

→ pφ = mb2Sin2θφ̇ (20)

ṗφ = −∂H
∂φ

= 0 → pφ = mb2Sin2θφ̇ = Constant (21)

By Combining these equations:

mb2θ̈ =
p2φCosθ

mb2Sin3θ
−mgbSinθ (22)

mb2θ̈ =
(mb2Sin2θφ̇)2Cosθ

mb2Sin3θ
−mgbSinθ (23)

mb2θ̈ = mb2SinθCosθφ̇2 −mgbSinθ (24)

θ̈ − SinθCosθφ̇2 + g

b
Sinθ = 0 (25)

We can in fact combine this equation with

mb2Sin2θφ̇ = Constant (26)

φ̇ =
k

Sin2θ
(27)

θ̈ − SinθCosθφ̇2 + g

b
Sinθ = 0 (28)

θ̈ − SinθCosθ k2

Sin4θ
+
g

b
Sinθ = 0 (29)

θ̈ − k2 Cosθ
Sin3θ

+
g

b
Sinθ = 0 (30)



EXAMPLE
A pendulum consists of a mass m suspended by a massless spring with untended length b and spring

constant k. The pendulum support rises vertically with constant acceleration a.
(a) Use the Lagrangean method to find the equation of motion
(b) Determine the Hamiltonian and Hamilton’s equation of motion.
(c) What is the period of small oscillation?

Let’s first write the transformation equations.

x = rSinθ → ẋ = ṙSinθ + rθ̇Cosθ (31)

y =
1

2
at2 − rCosθ → ẏ = at− ṙCosθ + rθ̇Sinθ (32)

We can write the Kinetic energy as:

T =
1

2
m
(
ṙSinθ + rθ̇Cosθ

)2
+
(
at− ṙCosθ + rθ̇Sinθ

)2
(33)

=
1

2
m

[
ṙ2Sin2θ + r2θ̇2Cos2θ + 2rṙθ̇SinθCosθ + a2t2 + 2at

(
rθ̇Sinθ − ṙCosθ

)
+
(
rθ̇Sinθ − ṙCosθ

)2 ]
(34)

=
1

2
m
[
ṙ2 +2 θ̇2 + a2t2 + 2at

(
rθ̇Sinθ − ṙCosθ

)]
(35)

and the potential energy as:

V = mgy +
1

2
k (r − b)2 = mg

(
1

2
at2 − rCosθ

)
+

1

2
k (r − b)2 (36)

The Lagrangean equation can be written as :

L =
1

2
m
[
ṙ2 + r2θ̇2 + a2t2 + 2at

(
rθ̇Sinθ − ṙCosθ

)]
−
[
mg

(
1

2
at2 − rCosθ

)
+

1

2
k (r − b)2

]
(37)

Now with the Lagrangean, we can write the two Euler-Lagrangean equations: w.r.t θ and w.r.t. r
Now let’s set up the Hamiltonian.
Unlike in the previous problems we did, in this case, the transformation equation has an explicit time

dependance. So,

H 6= T + V (38)

So we set up the Hamiltonian as:

H =
∑
j

pj q̇j − L (39)

H = pr ṙ + pθ θ̇ − L (40)



Let’s find the generalized momenta:

L =
1

2
m
[
ṙ2 + r2θ̇2 + a2t2 + 2at

(
rθ̇Sinθ − ṙCosθ

)]
−
[
mg

(
1

2
at2 − rCosθ

)
+

1

2
k (r − b)2

]
(41)

pr =
∂L

∂ṙ
= mṙ −matCosθ → ṙ =

pr
m

+ a tCosθ (42)

pθ =
∂L

∂θ̇
= mr2θ̇ +ma t r Sinθ → θ̇ =

pθ
mr2

− a t

r
Sinθ (43)

Now we can evaluate the Hamiltonian:

H = pr ṙ + pθ θ̇ − L (44)

H =
p2r
m

+ pratCosθ −
at

r
pθSinθ +

p2θ
mr2

− L (45)

By simplifying all the terms:

H =
p2r
2m

+
p2θ

2mr2
− at

r
pθSinθ + a tprCosθ +

1

2
mg a t2 −mg r Cosθ +

1

2
k(r − b)2 (46)

Now we have west up H(r, pr, θ, pθ, t), then we can apply the Canonical equations.

θ̇ =
∂H

∂pθ
=

pθ
mr2

− a t

r
Sinθ (47)

ṙ =
∂H

∂pr
=
pr
m

+ a tCosθ (48)

Next set of equation:

pr = −
∂H

∂r
(49)

pθ = −
∂H

∂θ
(50)

CONSERVED QUANTITIES
In the last class, along with the canonical equation, we also had another equation:

−∂L
∂t

=
∂H

∂t
(51)

Let’s take the total derivative of H:

H =
∑
j

q̇jpj − L (52)

dH

dt
=
∑
j

q̈jpj + q̇j ṗj −
dL

dt
(53)

L→ L(qj , q̇j , t) (54)
dL

dt
=
∑
j

∂L

∂qj
q̇j +

∂L

∂q̇j
q̈j +

∂L

∂t
(55)

dL

dt
=
∑
j

∂L

∂qj
q̇j + pj q̈j +

∂L

∂t
(56)



Now,

dH

dt
=

∑
j

q̈jpj + q̇j ṗj −

∑
j

∂L

∂qj
q̇j + pj q̈j +

∂L

∂t

 (57)

dH

dt
=

∑
j

q̇j ṗj −
∂L

∂qj
q̇j +

∂L

∂t
(58)

dH

dt
=

∑
j

q̇j ṗj − ṗj q̇j −
∂L

∂t
(59)

dH

dt
= −∂L

∂t
(60)

dH

dt
=

∂H

∂t
(61)

This tells that, if L does not explicitly depend on time, Hamiltonian is conserved.
If H does not explicitly depend on time, H is conserved.


