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CENTRAL FORCE MOTION
In the last class, we discussed about the equation of motion of an object in a central force field. We

discussed that the total energy and the angular momentum are conserved quantities.
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V (r) can be calculated using the type of the force field. For example, for the inverse square force law:
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Taking the potential at the infinite separation equals zero:
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Anyways, we can write that the total energy as:
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µṙ2 +

l2

2µr2
+ V (r) (8)

We can write this as:
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Where the effective potential is divined as:
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The first part of the effective potential is called the centrifugal potential.
Also, by looking at the eq.(8), we can write the ṙ as:
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According to the above equation, when the goal energy equals the effective potential, ṙ equals zero,
which is called a turning point. (In another words, at the turning points, particle sees a potential barrier)

That means, the relative difference between the total energy and the effective potential energy is an
important quantity in describing the orbit in a central force field.

Let’s plot the effective potential.



Figure 1: Effective potential

In the sketch (Figure1) of effective potential, we can identify three intersted regions

• If Total energy is larger than zero (as shown by E1, E1 ≤ 0)

Figure 2: Case 1 E1 ≤ 0

We find only one turning point r = r1,

The particle move towards the force center, from infinitely far away until it strikes the potential barrier
at r = r1, and reflected back toward infinitely larger r.

At any point r, we can find 1
2µṙ

2 as sown in the figure. We can see how the 1
2µṙ

2 changes as you
change the position (one example is marked in light green). Velocity keeps changing as the position
changes.

For this particular case, when the total energy is larger than zero, we see there is only one possible
turning point.



• If the total energy is as shown in E2 in the figure:

You can see that E − Veft becomes zero at two possible position values r1 and r4. The motion of the
particle is bound between r2 and r4.

Figure 3: Case II

• If the total energy E3 equals the minimum value of the effective potential as shown in the figure

The motion of the particle is limited to a particular r value given by r3 in the figure. That means a
circular motion.

Figure 4: Case III

Now we understand, the type of the orbit largely depends on the effective potential and the total energy
of the system. With this knowledge, let’s move on to the planetary motion.

PLANETARY MOTION
We would like to know, how the particle moves in an inverse square law potential. Because, planetary

motion is caused by the gravitational attraction, which is an inverse-square law force field.
We are interested in looking at how θ changes as a function of r.

dθ

dr
=

dθ

dt

dt

dr
(12)

=
θ̇

ṙ
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We know that
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where,
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By substituting them in the eq.(50),
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Let’s substitute, u = 1
r :
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Substituting in eq. (20),we get
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In order to solve this equation,we use a standard form of integral:
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By comparing eq.(25) and (26): we have
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By solving the integral in eq. (25), using the standard integration:
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Now if we define the condition that at rmin, θ = 0,
At rmin, u becomes maximum, That means −2u becomes minimum. So, at θ = 0, the right hand side

of the above equation is a minimum. Sinx is minimum, when x →= π/2, That gives, C = −π/2 in the
above equation: We can then write:
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Let’s define
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Equation (38) becomes:
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α
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Depending on the value of ε, the orbital shape in the inverse square law force field can be a circle, ellipse,
parabola, or hyperbola.

We will talk about this in the next class.


