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Magnetism and technology have been inextricably linked 
for centuries—from the navigation compass, to motors 
and generators, to magnetic data storage. The field of 

information storage has been dominated by ferromagnetic materi-
als from its inception to the present day. Memories based on fer-
romagnets, such as magnetic tapes and hard disk drives, have been 
one of the key factors that enabled the information revolution. 
Antiferromagnetism, on the other hand, has played fleeting roles 
in the story of information technology so far, despite the fact that 
antiferromagnetic order is common in magnetic materials. Most of 
these roles have been as passive elements, such as for pinning or 
hardening of ferromagnet layers.

The main obstacle that has kept antiferromagnets away from appli-
cation is that they are hard to control and hard to read. While ferro-
magnetic order can be detected by the magnetic fields it creates, and 
in turn manipulated by an external magnetic field, antiferromagnets 
produce no fringing magnetic fields and are much less sensitive to 
them (although they can also be manipulated by large enough mag-
netic fields). So while antiferromagnets could be used for memories, 
just like ferromagnets, the difficulty of detecting and manipulating the 
antiferromagnetic order provided a seemingly insurmountable barrier.

While magnetic fields provide a practical way for detecting and 
manipulating ferromagnetic order, many other methods have been 
developed. Perhaps most importantly, electrical currents can now 
be used both for detection and switching of ferromagnetic order. 
Utilizing electrical currents instead of magnetic fields is more 
efficient and more scalable, and thus the latest magnetic random 
access memories rely entirely on electrical currents1. The possibility 
of using electrical currents instead of magnetic fields for detection 
and manipulation has inspired a renewed interest in antiferromag-
netic materials. Electrical manipulation combined with electrical  
detection of antiferromagnetic order has been recently demon-
strated2. This shows that antiferromagnets could be used to store 
information in electronic memory devices and opens new avenues 
for fundamental research of antiferromagnetic order and dynamics.

Here, we review recent theoretical and experimental progress on 
spin-transport and spin-torque phenomena allowing for reading 
and writing information stored in antiferromagnets. See Fig. 1 for 
a summary of all proposed electrical reading and writing methods. 
We also discuss other transport phenomena relevant to spintronics 
such as the generation of spin currents by antiferromagnets due to 
the spin Hall effect (SHE)3,4.

Non-relativistic spintronics effects
As discussed in Box 1, antiferromagnetic spintronics initially 
focused on antiferromagnetic analogues of ferromagnetic spin 
valves and tunnelling junctions. These devices were theoretically 
proposed to have the same functionality as their ferromagnetic 
counterparts, but were found to be strongly sensitive to disorder 
and perfect epitaxy, which prevented their experimental realization.

A more promising approach might be to consider devices that 
combine antiferromagnets with ferromagnets, where the ferromag-
net functions as a spin polarizer. Gomonay and Loktev5 showed that 
a spin-polarized current can efficiently manipulate the antiferromag-
netic order, assuming that the torque generated by the spin-polarized 
current has the same form on each sublattice as is common in fer-
romagnets, that is, Tj ~ Mj ×  (Mj ×  p) (the so-called antidamping-like 
torque). Here j is a sublattice index, Mj is the magnetic moment on 
a sublattice j, and p is the direction of the spin polarization of the 
current. This form of the torque was subsequently derived in a more 
rigorous fashion6,7. It is instructive to consider why such a torque 
is effective for manipulating antiferromagnets. The torque can be 
thought of as being generated by an effective magnetic field, such that 
Tj ~ Mj ×  Bj with Bj =  Mj ×  p. In a collinear antiferromagnet such a 
field is staggered, that is, alternating in sign between sublattices. It is a 
general principle that staggered fields can efficiently manipulate anti-
ferromagnets, whereas uniform fields (such as an external magnetic 
field) cannot. Unlike the spin-transfer torque generated by an antifer-
romagnet, the torque due to the spin-polarized current is expected to 
be much more robust against disorder. We refer to the Perspective on 
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dynamics8 in this Focus issue for more details on the phenomenology 
of the time-dependent phenomena induced by the staggered fields.

The torques acting on an antiferromagnet due to injection of a 
spin-polarized current have been studied in ferromagnet/antiferro-
magnet bilayers in which the ferromagnet and the antiferromagnet 
are exchange coupled. The exchange coupling leads to a shift of the 
ferromagnetic hysteresis loop, which is known as exchange bias9. 
Several experiments have observed that electrical current influences 
the exchange bias10–15. This provides indirect evidence that a spin-
polarized current can influence antiferromagnets. However, the 
exact origin of the observed effect is not clear since exchange bias is 
a complex and not completely understood phenomenon.

The effects we have discussed so far are non-relativistic in origin. 
In contrast, many of the effects that we will discuss in the following 
sections are caused by the spin–orbit coupling. This is a relativis-
tic term in the Hamiltonian, which couples the spin and the orbital 
degree of freedom of an electron. Its significance lies in particular 
in the fact that it couples spin to the lattice and in this way it lowers  
the symmetry of the system and can generate a variety of non-equi-
librium spin phenomena.

Anisotropic magnetoresistance
The first, and still widely employed, method for electrically detect-
ing a reorientation of the magnetization in a ferromagnet is by 

using anisotropic magnetoresistance (AMR)16: the dependence of 
the resistance on the direction of the magnetization with respect to 
current or crystal axes.

AMR tends to be smaller than giant or tunnelling magnetoresis-
tance, however, it is simpler to detect experimentally since it is a bulk 
effect and thus does not require complex multilayers. Furthermore, 
as it is an even function of magnetization, it is equally present in 
antiferromagnetic materials17. However, until recently, the effect had 
remained elusive because of the difficulty in controlling the mag-
netic moment direction in antiferromagnets. Nevertheless, AMR has 
now been demonstrated in several antiferromagnets. Marti et al.18  
used antiferromagnetic FeRh for the demonstration of AMR. This 
material becomes ferromagnetic when heated and responds to applied 
magnetic fields. By then cooling back into the antiferromagnetic phase 
with the field still applied, the antiferromagnetic spin direction can 
be controlled. Other experiments used antiferromagnets exchange 
coupled to a ferromagnet19,20, large magnetic fields21,22 or electrical 
current2 (as we discuss in depth later) to manipulate the antiferromag-
netic moments. The full functional form of AMR, shown in Fig. 2a, 
was demonstrated by Kriegner et al.22 in antiferromagnetic MnTe.

AMR has both longitudinal and symmetric transverse com-
ponents. Historically, the transverse AMR is sometimes called  
the planar Hall effect, but we avoid this terminology because the 
true Hall effects correspond to the antisymmetric off-diagonal 
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Fig. 1 | illustration of the various concepts proposed for the electrical detection and manipulation of antiferromagnetic order. In all panels, blue denotes 
antiferromagnetic or ferromagnetic regions, red arrows denote magnetic moment, j denotes electrical current and R denotes resistance. a, Magnetoresistance 
in antiferromagnetic spin valve or tunnelling junction. It has been theoretically proposed, but so far has not been clearly detected experimentally. The 
orange region denotes non-magnetic or insulating spacer. The blue and red arrows denote magnetic moments on the two sublattices. b, Anisotropic 
magnetoresistance. This method has been demonstrated experimentally in several antiferromagnets. c, Anomalous Hall effect. This method has been 
demonstrated experimentally in non-collinear antiferromagnets. d, Tunnelling anisotropic magnetoresistance. A large readout signal has been experimentally 
demonstrated. e, Spin-transfer torque in an antiferromagnetic spin valve or tunnelling junction. Such torques were theoretically proposed, but so far have 
not been demonstrated experimentally. f, ISGE spin–orbit torque in a ferromagnet (left) and antiferromagnet (right). The blue arrows illustrate the spin-
polarization induced by current. The red and brown arrows denote the initial and final orientations of the magnetic moments. Switching using this torque has 
been demonstrated experimentally. g, The SHE spin–orbit torque. The green region corresponds to a non-magnetic metal, which generates the SHE. The pink 
arrow denotes the electrical current and the black arrows show the direction of flow for electrons with opposite spin-polarizations (denoted by blue).  
The torque in such a device has been experimentally demonstrated and switching has been recently observed with insulating antiferromagnets.
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Box 1 | Antiferromagnetic spin valves and tunnelling junctions

Giant77,78 and tunnelling magnetoresistance79,80 and spin-transfer 
torques81–83 are among the key spintronics phenomena for applica-
tions in ferromagnetic memories. These effects occur in devices 
composed of two ferromagnetic layers separated by a thin metallic 
or insulating layer (panel a). The metallic devices are called spin 
valves, while the tunnelling ones are referred to as magnetic tun-
nelling junctions. Giant and tunnelling magnetoresistance are, 
respectively, the dependence of the ohmic or tunnel current on 
the relative magnetization orientations of the two ferromagnetic 
layers. When an electrical current is flowing through the struc-
ture it transfers spin from one layer to the other, which generates a 
spin-transfer torque. For a sufficiently strong current, this torque 
enables switching between parallel and antiparallel configurations 
of the magnetic layers. The spin-transfer torque together with tun-
nelling magnetoresistance are used to create the basic building 
blocks of magnetic random access memories1.

Initial theoretical research in antiferromagnetic spintronics 
focused on antiferromagnetic analogues of spin valves and 
tunnelling junctions (see Fig. 1a for illustration of two different 
states of such junctions). Núñez et al.84 predicted that in an 
antiferromagnetic spin valve, a giant magnetoresistance as well 
as a spin-transfer torque will occur. They illustrated the existence 
of magnetoresistance and spin-transfer torque with a 1D model 
(panel b). Subsequent work found that these effects persist in more 
chemically realistic antiferromagnetic spin-valve structures85–87 
(panel c) and in tunnelling junctions88,89. (See also reviews by 
MacDonald et al.90 and Haney et al.91 on the early calculations 
and comparison to ferromagnets.) Haney et al.92 have shown that 
an antiferromagnet can also generate a torque on a ferromagnet. 
Similarly to ferromagnets, a spin-transfer torque is also predicted 
to occur for an antiferromagnetic domain wall86,93,94. All of these 
investigations, however, considered ballistic transport in perfectly 
epitaxial and commensurate heterostructures. A key issue is 
whether these effects will survive in realistic devices. Duine et al.95 
found that presence of inelastic scattering strongly reduces giant 
magnetoresistance and the torque, in contrast to ferromagnetic 
spin valves. Nevertheless, it was argued that magnetoresistance 
and the torque should survive since the inelastic mean free path is 

typically relatively large and elastic scattering was assumed to not 
influence the magnetoresistance and the torque much. However, 
later studies87,96,97 found that the torque is very strongly suppressed 
even by elastic scattering (panel d). Thus the torque (and likely also 
magnetoresistance) in antiferromagnetic spin valves is probably 
limited to very clean samples and low temperatures. Recent 
calculations by Saidaoui et al.98 suggest that the torque might be 
more robust against elastic scattering in tunnelling junctions.

A very good epitaxy is expected to be necessary for the 
presence of magnetoresistance and torque in antiferromagnetic 
heterostructures. Therefore, while theoretical works have clearly 
demonstrated that giant and tunnelling magnetoresistances 
and spin-transfer torques can in principle exist in purely 
antiferromagnetic structures, the observation of these effects would 
require clean and perfectly epitaxial devices. This is consistent with 
the fact that no torque, and only a tiny magnetoresistance99–101 have 
been observed in antiferromagnetic spin valves and tunnelling 
junctions so far.

Finally, we note that the research we have discussed so far 
focused mostly on collinear antiferromagnets. Recently, Železný 
et al.102 predicted that in non-collinear antiferromagnets, such as 
Mn3Ir and Mn3Sn, the electrical current is spin polarized. Thus, a 
robust torque and magnetoresistance could exist in spin valves or 
tunnelling junctions based on these antiferromagnets.

Spin valves and tunnelling junctions. a, The two states of a 
ferromagnetic spin valve or tunnelling junction. b, 1D tight-
binding model used by Duine et al.95. PM denotes non-magnetic 
(paramagnetic) region, and n1 and n2 denote the order parameters 
of the left and right antiferromagnet. c, Chemically realistic 
antiferromagnetic tunnelling junctions considered by Stamenova 
et al.89. d, Calculations by Saidaoui et al.96 for various spin valves, 
which show strong decrease of the torque in the presence of elastic 
scattering in the antiferromagnetic spin valves compared with a 
ferromagnetic one. Here, λ is the mean free path, L is the length of 
the spin valve, L0 correspond to 20 atomic sites and the inset shows 
normalized conductivities. ‘G-type’ and ‘layered’ corresponds to 
different types of antiferromagnetic spin valve. Reproduced from 
ref. 95, APS (b); ref. 89, APS (c); and ref. 96, APS (d).
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components of the conductivity tensor. Among those, the anoma-
lous Hall effect can also be used for detecting the magnetization 
reversal in ferromagnets. Unlike AMR, the anomalous Hall effect 
is an odd function of magnetization and thus not present in collin-
ear antiferromagnets. It has, however, been demonstrated in non-
collinear antiferromagnets23–26 (Fig. 1c). We refer to the article on 
topological phenomena in this Focus issue for more in-depth dis-
cussion of this phenomenon.

AMR is useful for experimental detection of switching of anti-
ferromagnets, however, its small magnitude limits the possible 
miniaturization and the readout speed in devices16. Significantly 
larger effects can be achieved by using a current tunnelling from 
an antiferromagnet to a non-magnetic metal, an effect called tun-
nelling anisotropic magnetoresistance (TAMR) (Fig. 1d). In antifer-
romagnets, TAMR was predicted by Schick et al.17 and subsequently 
demonstrated experimentally by Park et al.27 who found a very large 
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TAMR effect in a NiFe/IrMn/MgO/Pt tunnelling junction. The 
effect can exceed 160% at low temperature. In this work, the NiFe 
ferromagnetic layer sensitive to weak magnetic fields and exchange 
coupled with the IrMn antiferromagnet was used to rotate the anti-
ferromagnetic moments to produce different resistance states. The 
NiFe/IrMn exchange-spring effect was not robust enough to persist 
to room temperature. Ralph et al.28 reproduced the large low-tem-
perature TAMR and highlighted a strong sample dependence of the 
effect whose detailed microscopic description is still missing.

An alternative TAMR structure of [Pt/Co]/IrMn/AlOx/Pt with 
a stronger ferromagnet/antiferromagnet exchange coupling used 
by Wang et al.29 allowed for the detection of the effect at room 
temperature. A weak TAMR signal, not exceeding 1% even at low 
temperatures, was attributed in this structure to the amorphous 
AlOx tunnel barrier. Petti et al.30 demonstrated that the TAMR 
effect can also exist in structures that contain no ferromagnet  
using field cooling from above the Néel temperature. More 
research is needed to understand precisely the TAMR mecha-
nisms and to optimize the structures, however, these experiments 
demonstrate that a large magnetoresistance can in principle exist 
in antiferromagnetic structures.

Spin–orbit torque switching
Spin–orbit coupling allows for the generation of a current-induced 
torque in a magnet without spin injection from an external polarizer.  

The spin–orbit torque occurs because in crystals with broken inver-
sion symmetry electrical current generates a non-equilibrium 
spin-polarization (Fig. 2b). This effect is known as the inverse spin-
galvanic effect (ISGE) (also called the Edelstein effect)31–34. In a 
magnetic material, the current-induced spin polarization exchange 
couples to the equilibrium magnetic moments and thus generates a 
torque. The ISGE spin–orbit torque was theoretically proposed35–37 
and experimentally detected38,39 in the ferromagnetic semiconductor 
GaMnAs and recently also in the room-temperature ferromagnetic 
metal NiMnSb (ref. 40). For the presence of a net current-induced 
polarization, the inversion symmetry has to be broken, thus the 
Edelestein spin–orbit torque can only be used for manipulation of 
ferromagnets with broken inversion symmetry.

Železný et al.41,42 predicted that the ISGE spin–orbit torque 
will also occur in antiferromagnets with appropriate symmetry 
and that it can efficiently manipulate the antiferromagnetic order. 
The reason for the efficient manipulation is that with appropriate  
symmetry the current-induced spin polarization contains a compo-
nent that is staggered. This staggered component in turn generates 
a staggered effective magnetic field, which can manipulate the anti-
ferromagnetic order efficiently. Železný et al.41 calculated the spin–
orbit torque for antiferromagnetic Mn2Au, which has the crystal 
structure shown in Fig. 2c. The non-magnetic crystal of Mn2Au has 
inversion symmetry and, therefore, there is no net current-induced 
spin polarizations. The Mn sublattices, however, each have locally 
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broken inversion symmetry. As a consequence, there can be a cur-
rent-induced spin polarization on each Mn sublattice, but they have 
to be precisely opposite in the non-magnetic crystal.

The ISGE spin–orbit torque has advantages compared with the 
other current-induced torques discussed earlier. Because the torque 
is generated locally, it is not particularly sensitive to disorder43 and 
because it is a bulk effect it does not require special heterostructures 
and thin-film antiferromagnets. On the other hand, it only works in 
antiferromagnets with the appropriate symmetry. For example, for 
the presence of the field-like (that is, independent of the magnetic 
order) ISGE spin–orbit torque, the two spin-sublattices must occupy 
inversion-partner lattice sites. The switching of an antiferromagnet 
via this torque was initially demonstrated by Wadley et al.2 using 
epilayers of antiferromagnetic CuMnAs that has a symmetry analo-
gous to Mn2Au. Figure 2d shows a more recent measurement of 
this switching phenomenon on CuMnAs grown on Si. In CuMnAs 
(as well as in Mn2Au), the efficient torque has a field-like character. 
Because of the symmetry of the crystal, the field is perpendicular 
to the electrical current42. Thus, by applying perpendicular current 
pulses, the magnetic moments in CuMnAs can be switched between 
two perpendicular directions. In the experiment by Wadley et al.2, 
the switching was monitored by AMR. It was shown that the longitu-
dinal and transverse resistances depend on the direction, amplitude 
and duration of applied current pulses, in a way that is consistent 
with the expected ISGE spin–orbit torque. Further experiments used 
X-ray photoemission electron microscopy, combined with X-ray  
magnetic linear dichroism, to directly image the antiferromagnetic 
domain configuration following the current pulses2,44, confirm-
ing the magnetic origin of the electrical signals due to alignment 
of antiferromagnetic moments orthogonal to the applied current 
direction. Recently, the spin–orbit torque switching combined with 
the AMR detection was also confirmed experimentally in sputtered 
films of Mn2Au45,46.

Memory devices
Antiferromagnets possess a number of properties that make them 
highly favourable for memory applications. Like their ferromagnetic 

counterparts, their magnetic state is inherently non-volatile, but 
with the addition that they are robust to external magnetic fields. 
The antiferromagnetic spin-sublattices with a compensated mag-
netic moment give them some intriguing additional benefits. The 
absence of internal dipolar fields favours multistable antiferromag-
netic domain configurations, which can be exploited for integrating 
memory and logic functionality. The antiferromagnetic exchange is 
also the origin of the ultrafast reorientation dynamics (in the tera-
hertz regime), as well as making antiferromagnets magnetically 
‘invisible’ and enabling denser packing of memory elements.

There have been several demonstrations of antiferromagnetic 
memory devices based on the concepts we have outlined. The 
metamagnetic FeRh devices described by Marti et al.18 demon-
strate a memory functionality, where the information bits were 
represented by perpendicular directions of the antiferromagneti-
cally coupled magnetic moments. Moriyama et al.47 used the same 
approach and material system to demonstrate sequential read and 
write operations of the antiferromagnetic memory stable over a 
large number of cycles.

The CuMnAs devices described by Wadley et al.2 demonstrate 
an antiferromagnetic memory that can be both written (using the 
spin–orbit torque) and read (using AMR) electrically under ambi-
ent conditions (Fig. 3). Olejnik et al.48 explored the multilevel mem-
ory behaviour of these devices further and showed that they could 
be used to write up to thousands of states (Fig. 2e). By applying suc-
cessive current pulses, progressively higher reproducible resistance 
states can be reached depending on the number and duration of the 
pulses. Both pulse-counting and pulse-time-integration functional-
ities were demonstrated, for pulse lengths ranging from milliseconds 
down to 250 ps, close to the limit of contact current injection with 
commercial pulse generators (Fig. 2e). The micromagnetic domain 
origins of these multistable states were imaged by Grzybowski et 
al.44. Olejnik et al.48 also demonstrated the compatibility of CuMnAs 
memory devices with conventional microelectronic printed circuit 
boards (Fig. 3c), and low-temperature-growth and fabrication com-
patibility of CuMnAs with Si or III–V semiconductors (Fig. 3a). 
These memory devices have a promising potential for applications 
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based on their multilevel character, such as neuromorphic com-
puting or pulse counters. The readout signals are, at this point, too 
small for application as a conventional bistable memory. However, 
with device and materials optimization and utilizing a different 
readout method such as TAMR, the readout signals can likely be 
increased significantly. These memories could then potentially be 
used as conventional memories in situations where speed is very 
important, such as the central processing unit (CPU) caches.

Recently, switching by picosecond pulses of terahertz radiation, 
combined with AMR readout, has been demonstrated in the same 
CuMnAs bit-cells49. The switching in these experiments has a mul-
tilevel character, similar to the electrical switching. This shows that 
a non-contact switching of an antiferromagnet is also feasible and 
opens a path to the development of antiferromagnetic memories for 
the terahertz band. In contrast, ferromagnets are limited by the GHz 
writing speed threshold. For writing speeds up to the GHz scale, 
weak fields are sufficient for switching ferromagnetic moments and 
the associated energy cost decreases with increasing speed. Above 
the GHz threshold, however, the trend reverses, with both the 
field and the energy cost increasing proportionally to the writing 
speed50,51. As a result, current-induced spin–orbit torque switching 
has not been pushed in ferromagnetic memory devices to writing 
speeds exceeding 5 GHz (ref. 51).

Another intriguing concept for magnetic memory is a memory 
based on the movement of magnetic domain walls, the so-called 
racetrack memory. Antiferromagnets are of interest for such mem-
ories because antiferromagnetic domain walls were recently pre-
dicted to move much faster than ferromagnetic domain walls52,53. 
We refer to the article on dynamics in this Focus issue for detailed 
discussion of this topic.

In this Review, we have mostly focused on transport phenom-
ena. An exciting possibility is also the control of magnetic order by 
electric field in magnetic insulators. Such functionality has been 
demonstrated in magnetoelectric material Cr2O3 (ref. 54) and in 
multiferroic materials that combine ferroelectricity and antiferro-
magnetism. See the review article by Sando et al.55 for a description 
of recent progress on the most commonly used multiferroic mate-
rial BiFeO3.

Spin Hall effect in antiferromagnets
When current flows through a material, a spin current appears 
flowing in a direction transverse to the charge current. This effect 
is known as the SHE3,4. It originates due to the spin–orbit coupling, 
which causes the electrons with opposite spin to deflect in opposite 
directions thus creating a spin current. The inverse effect also exists: 
when a spin current is injected into a material with spin–orbit cou-
pling, a transverse voltage appears. The direct and inverse SHE are 
of key importance for spintronics since they allow for transforming 
between charge currents and spin currents.

The SHE can be used to generate a spin–orbit torque, which 
can switch a ferromagnet56,57. When a SHE material is interfaced 
with a ferromagnet and electrical field is applied parallel to the 
interface, a spin current flows into the ferromagnet and gener-
ates a torque on the magnetization. It allows, in principle, for a 
faster and more efficient switching of ferromagnetic layers than  
spin-transfer torque58. Note that the SHE mechanism coexists with 
the ISGE spin–orbit torque since interfaces break the inversion 
symmetry of the structure4.

The spin–orbit torque due to the SHE could also be used to 
manipulate antiferromagnetic moments41 (Fig. 1g). As discussed 
above, spin current injected into an antiferromagnet generates a 
torque that can efficiently manipulate the antiferromagnetic order. 
Such spin current could be injected from a ferromagnet, but the 
spin current due to the SHE could also be used. A spin–orbit torque 
in a heavy-metal/antiferromagnet configuration has indeed been 
observed experimentally59. However, the difficulty of manipulat-

ing the antiferromagnetic order by magnetic fields did not allow 
for a detailed characterization of the torque as is routinely done in 
heavy-metal/ferromagnet bilayers. Recently, switching of antiferro-
magnetic NiO, attributed to the SHE spin–orbit torque, has been 
observed in Pt/NiO/Pt multilayers60.

In the past, research of the SHE focused mostly on non-magnetic 
materials. It is, however, allowed by symmetry in any material, includ-
ing antiferromagnetic (and other magnetic) materials. The SHE has 
been found theoretically and experimentally in several antiferromag-
nets61–63. Instead of the direct SHE, these experiments demonstrated 
the inverse SHE, which can be detected electrically by injecting 
a pure spin current into the antiferromagnet. The spin current is 
generated by a ferromagnet either using precessing magnetization 
(the so-called spin pumping), as illustrated in Fig. 4b, or alterna-
tively using a heat gradient. An example of d.c. voltages measured 
in a spin-pumping experiment for antiferromagnets MnX, X =  Fe,  
Pd, Ir and Pt (Fig. 4a), is given in Fig. 4c. Several of the antifer-
romagnets showed a large SHE comparable to the commonly used 
non-magnetic heavy metals. In addition, the spin Hall conductivi-
ties along different crystalline axes are highly anisotropic in these 
antiferromagnetic alloys as has been demonstrated with measure-
ments of epitaxial films with different growth orientations64. This 
behaviour is consistent with intrinsic spin Hall effects as determined 
by first-principles calculations. Furthermore, the spin Hall conduc-
tivity seems to be susceptible to manipulation via different magnetic 
field and temperature cycles, resulting in different arrangements of 
the antiferromagnetic spin structure65.

Since antiferromagnets can have a large SHE, it is expected that 
they can also be used to generate a spin–orbit torque on a ferro-
magnet. This has been confirmed by several experiments for vari-
ous antiferromagnets59,64–72. The observed spin–orbit torque can 
be very large, comparable to the largest values for non-magnetic 
heavy metals. Switching of ferromagnetic layers by the spin–orbit 
torque has also been demonstrated67–69,72. Using an antiferromagnet 
instead of a non-magnetic metal has some unique advantages. For 
the spin–orbit torque switching it is preferable to use a perpendicu-
larly magnetized ferromagnet since this allows for faster switching 
and better scalability. However, in such a case, a constant in-plane 
magnetic field has to be applied to achieve deterministic switch-
ing73. Conversely, an antiferromagnet can be exchanged coupled to 
the ferromagnet, thus allowing field-free switching67–69,72. Another 
remarkable feature that was observed in antiferromagnet/ferromag-
net bilayers67 is a memristor behaviour (Fig. 4e,f), reminiscent of 
the multilevel spin–orbit torque switching in bulk antiferromagnets 
(CuMnAs, Mn2Au) discussed above2,45,48. This behaviour is of great 
importance for neuromorphic computing where it can simulate 
synapses. It is attributed to a progressive current-induced switching 
of more magnetic domains in the ferromagnet, which are then kept 
fixed by the exchange coupling with the antiferromagnet (Fig. 4d). A 
proof-of-concept artificial neural network based on the spin–orbit 
torque in a PtMn/CoNi structure has already been demonstrated74.

Outlook
The basic memory functionality, including electrical writing and 
readout has been demonstrated in antiferromagnets. Within a year 
of the initial demonstration of spin–orbit torque switching, the 
electrical pulse length has been reduced from milliseconds to pico-
seconds, opening a prospect of ultra-fast magnetic memories. The 
Heusler-compound-related CuMnAs antiferromagnet used in the 
experiments can be grown epitaxially, and devices can be micro-
fabricated on III–V or Si substrates, allowing for future integration 
in semiconductor circuits. Spin–orbit torque switching has also 
been demonstrated in Mn2Au, which broadens the range of suitable 
materials to sputtered transition-metal films. Multilevel (memris-
tor) switching is commonly observed in memories made of single-
layer antiferromagnets or antiferromagnet/ferromagnet bilayers.
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Momentum in the research area of antiferromagnetic spintron-
ics is immense, yet much remains to be done. To fully utilize the 
potential of antiferromagnets, several key aspects must be better 
understood. The factors that contribute to the complex domain 
structures, and their relative importance, need to be elucidated in 
order to design and engineer devices and material properties with 
the requisite domain patterns and stability for specific memory 
applications. The ultra-fast switching needs to be studied in detail. 
And promising steps have been made towards time-resolved  
optical detection75, as discussed in this Focus issue in the Review 
on opto-spintronics76.

The electrical readout signals observed in antiferromagnets at 
room temperature have so far been relatively small. This could be 
sufficient for some applications, but larger readout signals would be 
desirable for high-density fast readout memory application. Device 
and materials optimization is necessary to extend the large read-
out signals observed at low temperatures to room temperature. The 
only electrical switching method that has been demonstrated so far 
is the bulk ISGE spin–orbit torque. Switching using the spin–orbit 
torque due to the SHE could be more efficient and is expected to 
work in any antiferromagnet, whereas the ISGE spin–orbit torque 

requires antiferromagnets with specific symmetry. More materials 
research is necessary to identify other antiferromagnets that could 
be switched via the ISGE spin–orbit torque. The spin–orbit torque 
generated by antiferromagnets on ferromagnets in the antiferro-
magnet/ferromagnet bilayers is promising, although its origin is not 
entirely understood. It is commonly attributed to the SHE, but this 
has not been proven and other effects are likely to contribute. Of 
particular interest is understanding how the spin–orbit torque and 
the SHE depend on the antiferromagnetic order.
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