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1 Motivation

So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular
momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell
atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the
angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and
orbital angular momentum enter directly through terms like ~L.~S called the spin-orbit coupling. So instead
of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how
they couple together. One of the ways is through the total angular momentum defined as

~J = ~L+ ~S (1)

We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates
after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular
momentum operator.

2 Vector model of angular momentum

Figure 1: Maximum and minimum values of angular
momentum using the vector model

Let us first develop an intuitive understanding of the
total angular momentum through the vector model
which is a semi-classical approach to “add” angular
momenta using vector algebra. We shall first ask,
knowing ~L and ~S, what are the maxmimum and
minimum values of Ĵ . This is simple to answer us-
ing the vector model since vectors can be added or
subtracted. Therefore, the extreme values are ~L+ ~S
and ~L− ~S as seen in figure 1.1 Therefore, the total
angular momentum will take up values between l+s
and |l − s|.

|l − s| ≤ j ≤ l + s (2)

where j represents the magnitude of ~J which will translate to the eigenvalue in quantum mechanical
language. With the vector model, we can construct other quantities that will be useful later on such as ~J · ~J ,

~J · ~J = (~L+ ~S) · (~L+ ~S) = ~L2 + ~S2 + ~L · ~S + ~S · ~L = ~L2 + ~S2 + 2~L · ~S

=⇒ ~L.~S =
~J2 − ~L2 − ~S2

2
(3)

The quantity ~L · ~S is new and will appear in later sections. Also, it is worth mentioning that operators L̂,
Ŝ commute with each other since they belong to different vector spaces.

1Note that the −~S vector corresponds to the Sz = −1/2 state.
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2.1 Magnetic moment and energy associated with total angular momentum

In the case of non-zero L and S the total magnetic moment vector for associated with spin-1/2 systems such
as electrons will be

~µ = ~µL + ~µS = γ(~L+ 2~S) = γ( ~J + ~S) (4)

Where ~L and ~S are the orbital and spin angular momentum for electronic system under consideration.
So interestingly the magnetic moment is not along the L, or S or J direction, but along the J + S direction
(or anti-parallel to J + S to be precise since γ = −|e|/2me).

We want to convert this expression into the form gjγ ~J if possible where gj will be the effective g-factor.
Or to be more precise, we assert that

〈Ĵ + Ŝ〉 = gj〈Ĵ〉 (5)

This can be done by projecting onto ~J using the vector model, i.e.,2

( ~J + ~S) · ~J = gj ~J · ~J =⇒ gj =
( ~J + ~S) · ~J

J2

We can manipulate the LHS by noting

( ~J + ~S) · ~J = (~L+ 2~S) · (~L+ ~S) = L2 + 2S2 + 3L · ~S =
3

2
J2 +

1

2
(S2 − L2)

In quantum mechanics, 〈Ĵ2〉 = j(j + 1)h̄2 similar to L̂2 and Ŝ2 and therefore

gj =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(6)

The above g factor is called the Lande-g factor. It is easy to check for l = 0 and s = 1/2, gj reduces to 2,
which is the electronic g-factor. Therefore, the energy of the system under consideration when a magnetic
field is applied in the z-direction = Bok̂ is

E = −~µ · ~B = −gjγ ~J · ~B0 = −gjγJzB0 = gjµBmjB0 (7)

where mj is the quantum number associated with the Ĵz operator.

The magnitude of the magnetic moment is given by

|~µ| = gjγ| ~J | = gjγh̄
√
J(J + 1) = gjµB

√
J(J + 1) (8)

2.2 Hund’s third rule

Apart from the two rules specifying how to calculate the spin and orbital angular momentum of atom,
there is a third Hund’s rule that specifies the total angular momentum of an atom. Even though quantum
mechanically j can take any value between l + s to |l − s| (implying a number of degenerate states), atoms
usually pick either the highest or lowest value depending on the electronic configuration due the presence of
degeneracy-breaking spin-orbit interaction. Hund’s third rule takes this into account and can be summerized
as follows:

• J = |L− S| for less or equal to half-filled shell.

• J = L+ S for greater than half filled shell.

where we are using the notation that L =
∑
m, and S =

∑
sz following Hund’s first and second rule.

Example: Consider Carbon atom with a 1s22s22p2 configuration and L = 1, S = 1. Since the p-shell is

less than half-filled, J = 0. But oxygen with a 2p4 configuration also has L = 1, S = 1, but J = 2 since it is
more than half-filled.

2This is justified when J is a good quantum number (a constant of motion) instead of ~L or ~S. ~L and ~S precess around ~J .

Therefore, only the projection of ~S and ~L on ~J , the z-component in Fig 1, is non-zero. The x and y component of ~L and ~S
average to zero due to precession. In this scenario, we will consider the precession of ~J around the external magnetic field.
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