
Table 2 Effective magneton numbers for iron group ions 
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inside the ions, within the 5s and 5p  shells, whereas in the iron group ions the 
3d shcll responsible lor paramagnetisni is the outermost shell. The 3d shell er- 
periences the intense inhomogeneous electric field produced. by neighboring 
ions. This inhomogeneous electric field is called the crystal field. The inter- 
action of the paramagnetic ions with the crystal field has two major effects: 
The coupling of L and S vectors is largely hroken up, so that the states are no 
longer specified by their J values; further, the 2L + 1 s~~hlevels belonging to a 
given L which are degenerate in the free ion may now be split by the crystal 
field, as in Fig. 6. This splitting dirni~iishes the contribution of the orbital mo- 
tion to the magnetic moment. 

Quenching ofthe Orbital Angular Momentum 

In an electric field directed toward a fixed nucleus, the plane of a classical 
orbit is fixed in space, so that all the orbital angular momentum components 
L,, Ly, Lz are constant. In quantum theory one angular momentum compo- 
nent, usually taken as L,, and the square of the total orbital angular momen- 
tum L' are constant in a central field. In a noncentral field the plane of the 
orbit will move about; the angular momentum co~riponents are no longer con- 
stant and may average to zero. In a crystal L; will no longer be a constant of 
the motion, although to a good approximation  nay continue to be constant. 
When L, averages to zero, the orbital angnlar momentum is said to he 
cluenched. The magnetic moment of a state is given hy the avrragc value of the 
magnetic moment operator pB(L + 25).  In a magnetic field along the z direc- 
tion the orbital contribution to the magnetic moment is proportional to the 
quantum expectation value of L,; the orbital magnetic moment is quenched if 
the mechanical moment L, is quenched. 
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Figure 6 Consider an atom with orbital angular momentum L = 1 placed in the uniaxial crys- 
tallme electric field of the two positive ions along the z axis. In the free atom the states m, = f 1, 0 
have identical energies-they are degenerate. In the crystal the atom has a lower energy when the 
electron cloud is close to positive ions as in (a) than when it is oriented midway between them, as 
in (b) and (c). The wavefunctions that give rise to these charge densities are of the form zfjr), xf(r) 
and yfjr) and are called the p,, p,, p,  orbitals, respectively In an axially symmetric field, as shown, 
the p, andp, orbitals are degenerate. The energy levels referred to the free atom (dotted line) are 
shown in (d). If the electric field does not have axial symmetry, all three states wi l l  have different 
energies. 

As an example, consider a single electron with orbital quantum number 
L = 1 moving about a nucleus, the whole being placed in an inhomogeneous 
crystalline electric field. We omit electron spin. 

In a crystal of orthorhombic symmetry the charges on neighboring ions 
will produce an electrostatic potential cp about the nucleus of the form 

where A and B are constants. This expression is the lowest degree polynomial 
in x, y, z which is a solution of the Laplace equation V2cp = 0 and compatible 
with the symmetry of the crystal. 

In free space the ground state is three-fold degenerate, with magnetic 
quantum numbers m, = 1, 0, -1. In a magnetic field these levels are split by 
energies proportional to the field B, and it is this field-proportional splitting 
which is responsible for the normal paramagnetic susceptibility of the ion. In 
the crystal the picture may be different. We take as the three wavefunctions 
associated with the unperturbed ground state of the ion 



These wavefunctions are orthogonal, and we assume that they are normalized. 
Each of the U's can he shown to have the property 

where Y2 is the operator for the square of the orbital angular momentum, in 
units of fi. The result (26) confirms that the selected wavefunctions are in fact 
p functions, having L = 1. 

We observe now that the US are diagonal with respect to the perturbation, 
as by symmetry the nondiagonal elements vanish: 

(L'z!,lecplUy) = (U,lecplR) = (uy!,lecplUz) = 0 . (27) 

Consider for example, 

(U,lecplU,) = J xyl f(r)I2(Ax2 + By2 - (A + B)z2] dx dy dz ; (28) 

the integrand is an odd function of x (and also of y) and therefore the integral 
must be zero. The energy levels are then given by the diagonal matrix 
elements: 

(U,lecplU,) = J Ifir) I2{kx4 + By2x2 - (A + B)Z%*] dx dy dz 

z A({, - 12)  , (29) 

where 

I1 = J lfir) I2x4 dx dy dz ; I2 = J 1 f(r) I2x2zj2 dx dy c2z . 

In addition, 

(UylecplUy) = B(It - 12)  ; (LrZlecpluz) = -(A + B)(I, - 1%) . 

The three cigcnstates in the crystal field are p functions with their angular 
lobes directed along each of the x, y, z axes, respectively. 

The orbital moment of each of the levels is zero, hecause 

The level still has a definite total angular momentum, since 2' is diagonal and 
gives L = 1, but the spatial components of the angular momentum are not 
constants of the motion and their time average is zero in the first approxima- 
tion. Therefore the components of the orbital magnetic moment also vanish in 
the same approximation. The role of the crystal field in the quenching process 
is to split the originally degenerate levels into nonmagnetic levels separated by 
energies % pH, SO that the magnetic field is a small perturbation in compari- 
son with the crystal field. 

At a lattice site of cubic symmetry there is no term in the potential of the 
form (24), that is, quadratic in the electron coordinates. Now the ground state 
of an ion with one p electron (or with one hole in a p shell) will be triply 


