
Figure 13 Two Fermi spheres in adjacent . . - 
zones: a construction to show the role of phonon 
umklapp processes in electrical resistivity. 40 

than in a normal electron-phonon scattering process at low temperatures. (In an 
umklapp process the wavevector of one particle may be "flipped over.") 

Consider a section perpendicular to [loo] through two adjacent Brillouin 
zones in bcc potassium, with the equivalent Fermi spheres inscribed within 
each (Fig. 13). The lower half of the figure shows the normal electron-phonon 
collision k' = k + q, while the upper half shows a possible scattering process 
k' = k + q + G involving the same phonon and terminating outside the first 
Brillouin zone, at the point A. This point is exactly equivalent to the point A' 
inside the orignal zone, where AA' is a reciprocal lattice vector G.  This scat- 
tering is an umklapp process, in analogy to phonons. Such collisions are strong 
scatterers because the scattering angle can be close to T. 

When the Fermi surface does not intersect the zone boundary, there is 
some minimum phonon wavevector q, for umklapp scattering. At low enough 
temperatures the number of phonons available for umklapp scattering falls 
as exp(-OdT), where 0, is a characteristic temperature calculable from the 
geometry of the Fermi surface inside the Brillouin zone. For a spherical Fermi 
surface with one electron orbital per atom inside the bcc Brillouin zone, one 
shows by geometry that q, = 0.267 k,. 

The experimental data (Fig. 12) for potassium have the expected exponen- 
tial form with 6, = 23 K compared with the Debye O = 91 K. At the very low- 
est temperatures (below about 2 K in potassium) the number of umklapp 
processes is negligible and the lattice resistivity is then caused only by small 
angle scattering, which is the normal (not umklapp) scattering. 

MOTION IN MAGNETIC FIELDS 

By the arguments of (39) and (41) we are led to the equation of motion for 
the displacement 6k of a Fermi sphere of particles acted on by a force F and 
by friction as represented by collisions at a rate 11~: 
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The free particle acceleration term is (M/dt)  6k and the effect of collisions 
(the friction) is represented by UWT,  where T is the collision time. 

Consider now the motion of the system in a uniform magnetic field B. The 
Lorentz force on an electron is 

If mv = fi6k, then the equation of motion is 

An important situation is the following: let a static magnetic field B lie 
along the z axis. Then the component equations of motion are 

The results in SI are obtained by replacing c by 1. 
In the steady state in a static electric field the time derivatives are zero, so 

that the drift velocity is 

where w, = eBlmc is the cyclotron frequency, as discussed in Chapter 8 for 
cyclotron resonance in semiconductors. 

Hall Eflect 

The Hall field is the electric field developed across two faces of a conduc- 
tor, in the direction j x B, when a current j flows across a magnetic field B. 
Consider a rod-shaped specimen in a longitudinal electric field E, and a trans- 
verse magnetic field, as in Fig. 14. If current cannot flow out of the rod in the 
y direction we must have 8uy = 0. From (52) this is possible only if there is a 
transverse electric field 



Section + + + + + * + + +  
perpendicular 

to B axis; 
drift velocitv 

Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular 
cross-section is placed in a magnetic field EL, as in (a). An electric field E, applied across the end 
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the 
negatively-charged electrons immediately after the electric field is applied as shown in (b). The 
deflection in the -y direction is caused by the magnetic field. Electrons accumulate on one face 
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans- 
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field. 

The quantity defined by 

is called the Hall coefficient. To evaluate it on our simple model we use j, = 

ne27E/m and obtain 

This is negative for free electrons, fore is positive by definition. 
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Table 4 Comparison of observed Hall coefficients with free electron theory 

~ ~ 

' 
wavr method at 4 K are by J. M. Goodman. The values of the carrier concentratioh n are from I Table 1.4 except for Na, K, Al, In. where Goodman's vahles are nsed. To corrvert tlrc valuc oTR, in 
CGS nnits to the value in volt-cn~/amp-gauss, ~ n u l t i p l ~  by 9 x 10"; to convert A, in CGS to 

conv. -1.89 1 electron - 1.48 
-2.619 1 electron 2 . 6 0 3  

conv. -2.3 
1 electron -4.944 

 con^^. 4 . 7  
1 electron -6.04 
1 electron 0 . 8 2  
1 electron 1 . 1 9  
1 clcctron -1.18 
- - 

-0.92 - - 

+1.136 I hole +I.135 
+ 1.774 1 hole +1.780 

- - 

- - 

conw -6000. - - 

The lower the carrier concesltration, the greater the magnitude of the 
Hall coefficient. Measuring RH is all important way of measuring the carrier 
concentration. Note: The symbol RH denotes the Hall coefficient (54), but the 
same sysnbol is sometimes used with a different meaning, that of Hall resis- 
tance in two-dimensional problems. 

The simple result (55) follows from the assusnption that all relaxation 
times are equal, independent of the velocity of the electron. A numerical fac- 
tor of order unity enters if the relaxation time is a function of the velocity. The 
expression becomes somewhat more complicated if both electrons and holes 
contribute to the conductivity. 

In Table 4 observed values of the IIall coefficient are compared with val- 
ues calculated from the carrier concentration. The most accurate Ineasure- 
ments are made by the method of helicon resonance which is treated as a 
problem in Chapter 14. 

The accurate values for sodium and potassium arc in excellent agreement 
with values calculated for one cond~~ction electron per atom, using (55). 



Notice, however, the experimental values for the trivalent elerrlents aluminum 
and indiu~n: these agree with values calculated for one positive charge carrier 
per atom and thus disagree in magnitude and sign with values calculated for 
the expected three negative charge carriers. 

The problem of an apparent positive sign for the charge carriers arises 
also for Be and As, as seen in the table. The anomaly of the sign was explained 
by Peierls (1928). The motion of carriers of apparent positive sign, which 
Heisenberg later called "holes," cannot be explaitled by a free electron gas, but 
finds a natural explanation in terms of the energy band theory to be devclopcd 
in Chapters 7-9. Band theory also accounts for thc occiirrence of very large 
values of the Hall coefficient, as for As, Sh, and Bi. 

THERMAL CONDUCTIVITY OF METALS 

In Chapter Fj we found an expression K = ;Cut for thr thermal cond~ictiv- 
ity of particles of velocity v ,  heat capacity C per nnit vohlme, and mean free 
path t?. The thermal conductivity of a Fermi gas follows from (36) for the heat 
capacity, and with E ,  = :mu; : 

2 nkZT &=-.L. u,.Z =- 2nkiT.r 
3 mu: 3m 

Here 4 = V ~ T ;  the electron concentration is n, and T is the collision time. 
Do the electrons or the phonons carry the greater part of the heat current 

in a metal? In pure metals the electronic contribution is dominant at all tem- 
peratures. In impure metals or in disordered alloys, the electron mean free 
path is rednced by collisions with impurities, and the phonon contribution may 
be comparable with the electronic contribution. 

Ratio of Thermal to Electrical Conductivity 

The Wiedemann-Franz law states that for metals at not too low tcmper- 
atures the ratio of the thermal conductivity to the electrical cond~lctlvlty is 
directly proportional to the temperature, ulth the value of the constant of 
proportionaky independent of the particular metal. This result was important 
in the history of the theory of metals, for it supported the picture of an 
electron gas as the carrier of charge and energy. It can be explained by using 
(43) for u and (56) for K: 


