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The magnetoresistance in the simple one-mobility model is exactly zero, although the curved nature of the
carrier trajectories and the statistical nature of scattering both appear to be dispersive mechanisms which

should produce a positive magnetoresistance. The first efFect is considered separately by analyzing an
artificial version of the model in which the particle is always scattered after the same time interval has
elapsed. It leads to a negative magnetoresistance which is about as large as the well-known positive effects
which have been calculated for isotropic semiconductors with energy-dependent scattering. Thus the zero
result actually reflects a cancellation of two opposing effects. The possibility that this difFerent point of view

regarding the fundamental nature of magnetoresistance might contribute to a better understanding of the
negative magnetoresistance found experimentally in several classes of materials is mentioned, but is not
explored further in this paper.

I. INTRODUCTION

This paper answers a paradoxical question con-
cerning the transverse magnetoresistance in the
simplest transport model (hereafter called STM).
The model referred to is the familiar one in which
all carriers have the same mass m and relaxation
time 7', and hence the same mobility p= ex/m.

As a consequence of the unique dispersionless
property of the STM, the Hall coefficient 8 and the
transverse magnetoresistance n p/p, {p, is the ze-
ro-fieM resistance) have the special values'

R =1/ne

nal point r& reached after many collisions.
It therefore appears that every carrier in the

STM executes a dispersive type of emotion because
of the combined effects of the curved trajectory and
the random nature of scattering. Why does this not
lead to a positive magnetoresistance'P

This question will be answered by considering a
version of the STM in which the scattering is corn-
pletely nonrandom; i.e. , the interval between scat-
tering events is always the same time T. This as-
sumption corresponds to the kind of motion sketched

where n and e are the carrier density and charge.
In the realm of classical physics, these results are
exact at all magnetic field strengths.

It is very common to assert that the zero mag-
netoresistance in the STM comes about because the
Hall field can balance the Lorentz force for all of
the carriers; then the carriers again move straight
down the sample, just as they did before the map
netic field was turned on. s

This is clearly not true on a microscopic level.
The trajectory of a classical charged particle in
crossed electric and magnetic fields is cycloidal
in nature, regardless of the sources of the electric
field. Furthermore, because of the statistical na-
ture of scattering, the lengths of the cycloidal seg-
ments will be randomly distributed.

The nature of the trajectory which results is
sketched in Fig. 1(a). It is evident that each
curved segment is longer than the corresponding
straight (dashed) line between its end points, and
that the total length of the zigzag succession of
straight lines is greater than the length of a single
straight line from the starting point r; to some fi-

{a)

{b)

FIG. 1. Classical trajectory of a charged particle in
an electric field E and a magnetic field H perpendicular
to the plane of the figure. (a) random scattering, (b) non-
random scattering.
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in Fig. 1(b), and permits the effect of the curved
nature of the trajectory to be considered separately
from the effect of random scattering.

II. STATISTICAL AND NONSTATISTICAL TRANSPORT
CALCULATIONS IN STM

The most common formal method of calculating
transport properties which treats scattering as a
statistical occurrence is to use the Boltzmann
equation with the relaxation-time approxima. ion.
This approach, or any equivalent one, ' leads to
Eqs. (1) and (2).

The corresponding calculation of the STM prop-
erties assuming nonrandom scattering may be car-
ried out with the aid of Fig. 2. Sketched there is
the particular kind of cycloidal motion that occurs
when the charged particle starts from rest under
the influence of the indicated electric field E and a
magnetic field H perpendicular to the plane of the
figure. This is not a special assumption, however,
but merely corresponds to the centroid of the ther-
mal motion of each "shell" of carriers having a
given energy.

If a charge starts from (0, 0) at t = 0, at the time
T (when it is scattered) it will have reached the
point given by

io = ne(eE cosB„Tz/2 m)/T . (6)

Consequently,

Since this motion repeats itself endlessly, and
since all carriers have the same properties, the
steady-state current density is simply

i& = nev = ner(T}/T,

where r= (x +y ) z. The Hall angle 9„, identified
in Fig. 2, is given by cos8„=x(T)/r(T), so that the
Hall field EH and the electric field E; that produces
the current are the components of E perpendicular
and parallel to the 6„direction.

Note that this forces-in-fluxes-out" approach
corresponds to that used in the Boltzmann equa-
tion. But since the model is isotropic, the relative
directions and magnitudes of i, E, and H are a
property of the medium, not of the boundary condi-
tions. Hence there is no need to invert and rotate
the solution. The G„direction, whatever it may
be, is simply assumed to coincide with the sample
orientation.

The resistivity in the magnetic field is E;/i„,
and this must be compared with the corresponding
ratio in the same direction when E& is the only
force present. The current density in that case is

and

x(T) = (u/u)(1 —cos~ T)

y(T)= (u/u&)(~ T —sin~ T), (4)

pz ip (z /2)(1 —cosz)
po &0 ~ —2 cosy —28 S1ILE + 2

where z =&T. In weak magnetic fields (i.e. , to the
lowest order in z),

where u=CE/H, m=eH/mC, and C is the compat-
ibility factor. " pz/pp = 1 —g$z

so that

& P/Po = —
33t z

(&)
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FIG. 2. Cycloidal trajectory of a charged particle,
subject to an electric field E =E„and H =H~, starting
from rest at the point (0, 0) and scattered at (x,y). Bg is
the Hall angle, EH and E; are the Hall field and the com-
ponent responsible for the current.

Hence the weak-field magnetoresistance in the STM
with nonrandom scattering is negative.

The definitions oo (zero-field conductivity) = io/
E;, p = oo/ne, R=EH/io H, and p„(the Hall mobility)
=Boo, lead in a straightforward manner to the re-
sults summarized in Table I, including an alterna-
tive form for 6 p/po, in which the factor zz is re-
placed by (p, „H/C)z. The corresponding results for
the standard, random-scattering STM are also
shown for comparison. Note that the expressions
for R, p„, and 4 p/po are weak-field approxima-
tions in the nonrandom model, but hold at all mag-
netic fields in the statistical treatment.

The nonrandom-scattering results may be trans-
formed into the usual ones for the STM simply by
computing average values for x(T) and y(T) for a
large number of random values of T. Suppose
there are N cycloidal arcs having durations T which
are distributed in accordance with a constant prob-
ability of scattering, I/r. If these arcs are all
transposed in time, so that they begin at t = 0, then
the number dN which ends between t and t+dt is
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TABLE I. Transport properties of the STM with ran-
dom and nonrandom scattering.

Conductivity
0'p

Mobility
p

Hall coefficient
R

Hall mobility
~e

Magnetoresistance
&P/Pp

Random

ne~7/m

ew/m

1/ne

ev/m

Nonrandom

y(eT/m)

-,'(1/ne)

&(ex/m)

—g(pHH/C)

dN= (N/~)e 't'dt . (10)

v, = (e7/m)[~r/(1+(g 7 )]E,
so that

v=(er/m) E,
i.e. , the magnetoresistance vanishes.

(13)

III. DISCUSSION

First, it must be emphasized that this paper ex-
amines two versions of the STM, a model in which
all carriers have the same mobility. This is to be
distinguished from all other models in which car-
riers of different mobilities contribute. In the lat-
ter cases, different Hall angles are involved, and
the carriers will disperse or fan out about the av-
erage Hall angle or overall direction of the total
current.

For example, in the case of isotropic semicon-
ductor models with energy-dependent scattering, it
may be showa that~'7

and

E &1/ne

n p/po

(14)

(15)

The question raised in Sec. I was concerned spe-
cifically with magnetoresistance, and the result of
main interest here is the fact that it turns out to be
negative when nonrandom scattering is assumed.

The total displacements in the x and y directions
from the N cycloidal arcs are JxdN and fydN To.
obtain the corresponding components 6f average
drift velocity, the displacements must be divided
by the total time required to execute the N orbits,
viz. , f tdN = N7'.

Using Eqs. (3) and (4) for x and y then leads to'

v, = (er/m) [1/(1+~'v )]E

This surprising result may be seen from a better
perspective if preceded by a brief discussion of the
other results listed in Table I.

The presence of the numerical coefficient 2 in the
expressions for o~ and p, is of course to be antici-
pated from the most elementary considerations: If
a particle, starting from rest, undergoes an ac-
celeration a for a time T, its average velocity will
be —,'aT. The fact that v=a7, when v is properly
defined as the reciprocal of a scattering probabili-
ty, is discussed at some length by Shockley. 8

The rather curious value —', (1/ne) for the weak-
field Hall coefficient obtained in the nonrandom-
scattering STM may be found in textbook derivations
dating from 1914 through 1969. " Surprisingly,
there is little or no discussion of this result. In
particular, it is not pointed out that the coefficients
3 and 1 correspond to nonrandom- and random-
scattering assumptions within the framework of the
STM. In fact, the only comment made in some of
those references is that a more rigorous calcula-
tion will lead to a somewhat different result. This
remark can be misleading if the reader assumes
that a more realistic band model is required, i. e. ,
one in which there is some mobility variation
among the contributing carriers.

A number of nonstatistical calculations of mag-
netoresistance in the STM have been published. '
They produced a variety of results, some positive
and some negative, and there was considerable
discussion of which sign was to be preferred.
Some of those publications ' contain a particularly
serious error: The magnetoresistance was deter-
mined from the ratio of the total electric field to
the comPonent of the current in the direction of E.
Qne possible result of such an erroneous assump-
tion is sketched in Fig. 3.

Shown there is the current density io resulting
from the field E alone. If there is no magnetore-
sistance, application of a transverse magnetic field
causes the current to rotate through the angle 6„
and to be reduced to i& = io cos60. A longer current
vector iH in the same direction corresponds to a
negative magnetoresistance. But its component in
the E direction, i H cos6„, can still be less than io,
and in the case cited' was incorrectly interpreted
as indicating a positive effect.

Since the original version of this paper was pre-
pared, a 1924 paper by Page" was discovered in
which Eq. (9) was actually obtained for the weak-
field magnetoresistance. However, Page wrote
this paper to correct an earlier calculation of the
Hall effect by Eldridge. ' The negative magnetore-
sistance which Page found led him to conclude that
his own model was also inadequate, since this re-
sult disagreed with the positive effects found ex-
perimentally.

The first comment to be made about the negative



GALVANOMA GNE TIC PRO PE RTIE S OF THE SIMP LE ST ~ ~ ~ 4473

i' cos8H I

= I CoseH

FIG. 3. Vector diagram illustrating zero magneto-
resistance (ig=ip cose+), a negative magnetoresistance
(iz& i~), and an erroneous calculation of an apparently
positive magnetoresistance (iz cose+ &ig. iz and iH are
the current densities in the magnetic field, i p the zero-
field current density, and e~ the Hall angle.

purposes, that problem may be stated in the follow-
ing form:

A particle is dropped from rest in a uniform
gravitational field. Along what path must it be
guided (by frictionless constraints) so as to arrive
in the shortest possible time at a given final point
not directly beneath the original one? Bernoulli
showed that the cycloid through the two points which
has a cusp at the first one is the fastest of all pos-
sible trajectories.

The gravitational field and the frictionless con-
straints correspond to the electric and magnetic
forces of the present problem. Since the cycloidal
path is quicker than all other paths connecting the
two points, it must in particular be faster than the
straight line path with which it is compared in a
magnetoresistance calculation.

As outlined briefly at the end of the previous sec-
tion, the second and final step in the calculation of
the magnetoresistance in the STM is to introduce
the effect of the statistical distribution of scatter-
ing events. This brings the calculation into coin-
cidence with the formal, real-space version of the
statistical treatment of the STM. ' Hence it must,
and does, lead to the usual zero magnetoresistance.

IV. CONCLUDING REMARKS

magnetoresistance in the nonrandom STM is that it
is not a small effect. The coefficient (- —,') in the
table is almost as large in magnitude as the well-
known coefficient (4jz) —1 (=0.275), which occurs
in the isotropic semiconductor with a constant m
and v~ e ' (z= carrier energy).

The second comment is that the negative result
is not confined to weak magnetic fields. If the
magnetoresistance becomes positive at higher H,
then Eq. (7) must equal unity at some intermediate
value. Some algebra shows that this does occur
when

—,'z =tan(-,'z) . (16)

Thus there is only one such point for each cycloi-
dal arch, i.e. , within each interval 2'~ z~ 2g
x (N+1). In the first interval, the only solution is
the uninteresting one, z=0 (i.e. , H=O). Further-
more, the remaining solutions do not separate re-
gions of negative and positive magnetoresistance.
Between each pair of successive solutions of Eq.
(16), the cycloidal path touches the y axis. At
every such point, the magnetoresistance is clearly
negative, since those points can never be reached
when E=E„and H=O.

It turns out that the negative magnetoresistance
discussed in the present paper is actually not an
isolated effect. It is analogous to the famous
Brachistochrone problem, which was posed and
solved by Bernoulli in 1696.' For the present

This paper has answered a question which, al-
though elementary in nature and pertaining to the
simplest imaginable model, does not seem to have
been discussed before. The analysis revealed a
layer of physics which is concealed by the usual
statistical calculations of galvanomagnetic proper-
ties.

The significance of the present work is that it
provides a somewhat altered viewpoint regarding
the fundamental nature of magnetoresistance. For-
merly, it appeared that for any model in which ~
and m were not functions of H, all relevant aspects
of the model either contributed to a positive mag-
netoresistance or had no effect one way or the oth-
er. In the case of the STM, only the latter effect
was present, so that in that case, and in that case
alone, there was no magnetoresistance.

It now appears that the magnetoresistance phe-
nomenon is a delicate balance between the inher-
ently negative effect of trajectory curvature and a
positive contribution due to the statistical nature
of scattering. In the STM, the effects just cancel,
but in other models, the additional dispersion that
results from the variation of carrier mobilities
leads to a positive effect.

This paper has been restricted to a discussion
of models for which a scattering or relaxation time
may be defined. But the negative magnetoresis-
tance factor should be present in a larger class of
models for which the concept of a trajectory is
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meaningful.
There are several classes of more or less exotic

materials in which a negative magnetoresistance
has been found. Theories have been proposed to
account for these results, but they cannot be said
to have provided a generally satisfactory explana-
tion of the phenomenon.

Would a better understanding follow if some of
the proposed theories were modified or reinter-
preted in terms of the notion that the scattering
process is, in one sense or another, nonrandom?
This speculative question will not be taken up in
the present paper, but it does seem worth mention-

ing in connection with the present results.
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