8 Survey of basic principles

Magnetoresistance in real metals

Let us now look at some characteristic examples of magnetoresistance in
real metals to see how far they depart from the free-electron model for
which no change is predicted. In due course we shall be concerned to
understand them in detail but for the moment they serve to illustrate the

variety of forms which makes the subject interesting. The curves have been

redrawn from published data, experimental points being omitted since the
shapes are not in dispute. When it is reasonable to do so values of B are
quoted directly and also converted by use of (3) into w.t (some authors
disconcertingly present values of @t for metals which do not approximate
to the free-electron model, without making clear how they are calculated).
We shall see that different metals may present widely different changes of
resistance at the same w,1.

It is conventional to express the degree of purity of the sample by its
residual resistance ratio (RRR in many papers, but r, here), being the ratio
of its resistance at 0 °C to its residual resistance, for which the resistance at
4K is usually an adequate measure; and a large fraction of the measure-
ments to be discussed were taken at this temperature in a bath of liquid
helium boiling at atmospheric pressure. The magnitude of the magneto-
resistance is usually expressed by AR(B)/R,, R, being the sample resis-
tance in zero magnetic field, R(B) the resistance in field B, and AR(B) =
R(B) — R, In all the examples presented here the field was transverse to the
current.
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negative magnetoresistance (fig. 8). Sometimes, however, the resistance
change shows an oscillatory component, which may not appear striking
when observed directly but which can be distinguished from the smooth
variation by recording dR/d B instead of R. The oscillatory component thus
revealed in a flat plate of gallium is shown in fig. 9, where it can be seen that
the period of oscillation is constant and unaffected by the magnitude of B.
This is characteristic of size-effect oscillations. 212
On the other hand, oscillations of resistance having their origin in
quantization of the electron orbits show a constant period only when
plotted against 1/B. In a direct plot against B, as in fig. 10, the period
lengthens markedly towards higher field strengths.
This concludes the preliminary exposure of typical magnetoresistance
behaviour which it is the business of this book to explain in as much detail
WM as possible. The rest of the chapter is concerned with the general theoretical

concepts which form the basis of the variety of special treatments required.
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et exladons (o £ ! Ina Fermi gas of electrons at 0 K, all states up to the Fermi energy are filled
-effect oscillations (Munarin -

and those above are empty. On raising the temperature, thermal excitation
affects only those within a few kgT of the Fermi surface, a very small
fraction at the temperature of most measurements. Only these few can suffer
collisions, the rest having no empty state available into which they could be
scattered. We visualise the conduction process as involving the bodily shift,
i by the action of &, of the k-vectors of all filled states. Most states which were
initially filled remain so after the application of & and therefore play no part
in forming a current. The changes that matter are that a few empty states
near the Fermi surface become filled and a few on the opposite side, that
initially were filled, become empty. It is these that carry the current, and the
scattering of these electrons round the Fermi surface that destroys it.
Itis clear from the high conductivity of pure metals (when B =0) at low
temperatures that the free path, [, of electrons near the Fermi surface must
be long; let us-make an estimate for a free-electron metal. The relaxation
time, 7, in (1) may be replaced by I/v, v being the Fermi velocity, and m*vg
.~ is the Fermi momentum, fike. Also the volume of the Fermi sphere is $nk?
- and this volume is packed with 1/473 states per unit volume of metal, so that
n=kg/3n?; hence,
pl=(3n2/n?)13p /2 (1.21)

In potassium, n=13.94 x 10>’ m~3 and pl=2.19 x 10"'5Qm?2. A very

s at 1.6 K of a single crystal o
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