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1 Survey of basic principles

Although magnetoresistance is not intrinsically a low temperature pheno-
menon like superconductivity or superfluidity, in practice with magnetic
field strengths available in the laboratory it is hardly likely to attract
attention except in rather pure materials at low temperatures. This is not so
true in semiconductors as in metals, which are our primary concern, or in
the semi-metal bismuth whose sensitivity to modest magnetic fields, even at
room temperature, has made it a useful compact field-measuring instru-

ment since before 1886." The effect is not dramatic, about 18%; increase in -

resistivity in a transverse field of 0.6 T, rising to a 40-fold change at 24 T as
observed by Kapitza.” Copper is more typical in that the same very
powerful field gave rise to a change of only 2% at room temperature.®
Cooling to the temperature (4K) of liquid helium works wonders — a
reasonably pure sample of polycrystalline copper was found to increase its
resistance 14-fold in a field of 10T, and the better material available
nowadays might be expected to show a change af least 5 times larger.®®
As for bismuth, a pure sample can have its resistance changed by a factor of
several million by applying a field of 10 T.¢

To estimate the conditions necessary for a marked magnetoresistance,
consider a condensed Fermi gas of electrons with an approximately
spherical Fermi surface. The conductivity and resistivity are given by the
well-known formulae

0o =ne’*t/m* and p,=m*/ne’t, (1.1)

in which n is the number of electrons per unit volume and m* their effective
mass, not necessarily the real electron mass. The relaxation time t describes
the time-constant for a current to die away when the sustaining electric field
is removed. When B =0 the electrons travel in straight lines between
collisions, and a magnetic field can only have a significant effect on the
conductivity if it is strong enough to bend the trajectory appreciably during
a free path. The Lorentz force ev A B bends the paths into helices whose
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2 Survey of basic principles
axes are parallel to B, and the angular velocity of an electron round its
particular axis is the cyclotron frequency

(12)

The mean angle turned between collisions is @7, and unless w7 >1 0o
great magnetoresistance effect can be expected. As we shall see presently, 2
7 does not guarantee magnetoresistance, but generally
(1) and (2) we have

w, = eB/m*.

large value of @
speaking the criterion is sound. Combining

w,t = Bao/ne, (1.3)

from which the least well known quantity, m*, has disappeared, allowingan
estimate of w.7. In cOpPer, for example, with one conduction electron per
atom, the atomic volume is 7.8 X 10~2 m3/kg mole, so that n=385x
10?8 m~3. At 0°C, 00 = 6.4 x 10’ Q™' m~! and hence, from @3), wr=4T%
10~3 B. In the strongest field attained by Kapitza, B= 30T, w,t was only
0.14 and it is hardly surprising the observed effect was SO small. The sample
used by de Launay et al ) however, at 4 K had a conductivity 606 times
higher so that, when B= 10T, w .t was 28: the electrons are now wound into
tight enough helices to execute about 4 turns between collisions, easily
enough to change the conduction process considerably.
The strong effect in bismuth at room temperature arises because,
containing as it does only about 107 5 conduction electrons per atom,” its
resistivity is nevertheless no more than 70 times that of copper —an

. indication of an unusually long relaxation time. If we overlook the fact that
the Fermi surface is far from spherical, so that the use of (3) can giveat besta
rough estimate, the outcome of its application here is that w.t ~ 20 B, and
the occurrence of magnetoresistance, even at room temperature, is made

plausible. In this case conditions are especially favourable, in that bismuth

is a compensated metal, with equal numbers of electrons and holes, and
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alkali metals it is not far from unity for the majority of orbits; but in
transition and rare earth metals the electrons in the lower bands frequently
have m./m, considerably in excess of unity. And the mass is still further

enhanced if the electron carries a clothing of virtual phonons with it, being
as high as 90 in U Pt,.®

The free-electron gas shows no magnetoresistance

In the free-electron model the electrons are supposed to move independ-
ently, obeying Newton’s laws of motion and possessing a mass m (or m* in

the quasi-free model) which is isotropic. Extension to anisotropic mass,

with an acceleration law m;;v; = F;, is easy, but we shall not concern

ourselves at the moment with this rather artificial concept. The argument
that follows does not depend greatly on the electrons forming a degenerate
Fermi gas as in most metals at ordinary or low temperatures — it is equally
good for the rarefied Boltzmann gas typical of pute semiconductors.
Whatever the distribution of velocities, each electron is accelerated by an
electric field according to the equation

m*v = e&. (1.4)
I the electrons are not deflected, and their motion randomized, by
collisions the current density rises steadily,

J= Y ev = ne*&/m*, (1.5)

the summation being taken over all electrons in unit volume.
Now let us introduce collisions by supposing that J, after & is removed,
would decay exponentially. This is a good approximation for an isotropic

degenerate gas, and fairly good for a Boltzmann gas, and it leads us to
extend (5) to read
J=ne2&/m* - J/z, (1.6)

T being assumed to take the same value for all directions of J. In the steady
state J =0, and J = 0,&, with ¢, having the same form as in (1).

Itis helpful for the next stage of the argument to consider the momentum
balance in the electron gas. The momentum density P =3 m*v=m*J/e,
and (6) may be rewritten

P =ne& — P/r.

(1.7)
The momentum density is subject to change from two force-densities, the
electrical force-density ne& and the collisional — P/t which is the New-
tonian reaction of the collision centres in the lattice when struck by
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Figure 1.1 Forces acting on unit volume of a quasi-free electron gas
carrying current J in transverse field B.

electrons. Ip the steady state, of course, they balance.! Now let B be applied
transverse to J, exerting a Lorentz force ev A Bon each electron and a force-
density Yev A B,ie.J A B, on theelectron assembly as a whole. Adding this
into (7) we see that in the steady state, _

0=ne® —P/t+J AB=ne& —m*Jjet+J AB. (1.8)

In representing this result as a vector diagram (fig. 1) it has been assumed
that neither m* nor t are affected by B — almost always a safe assumption.
One sees immediately that the component of & parallel to J is unchanged,
but a transverse component arises to cancel the Lorentz force. This is the
Hall® field, of magnitude J B/ne. In an experiment where a current is passed
along a wire or strip the direction of J is predetermined, and & adjusts itself,
with the aid of space charges or surface charges if necessary, to satisfy (8).
Then potential contacts can be placed to respond either to the parallel
component, giving the resistance (unaffected by B in this case) or the Hall

field. The angle ¢ between J and &, the Hall angle, may also be measured in 3

this way. The diagram shows that

tan ¢ =eBt/m* =w. from (2). . (1.9
Alternatively, and especially in semiconductor physics, et/m* may be
being ¢

non-divergent. If this is not the case, asinan example treated in chapter 6,an extra term must

t The correctness of this treatment depends on the convection current of momentum

be added to the momentum balance. Here, however, spatial uniformity makes i
unnecessary. 2
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written as y, the mobility, being the drift velocity acquired by an electron in
an electric field of unit strength; and tan ¢ = uB.

The magnetoconductivity and Mmagnetoresistivity tensors

When the direction and magnitude of J are fixed by the experimental
procedure, and & adjusts itself accordingly, what is measured is the
resistivity tensor, pijJ;, or a component or combination of components;

Ei=p;;J;. , (1.10)

For theoretical purposes, however, it is usually more convenient to imagine
& applied in some chosen direction and to calculate the resulting J, related
to it by the conductivity tensor,

']i=o.l'j(gj‘ (1'11)

The relation between g;; and its inverse pij is

Pii = (ajjakk - ajkakj)/A(a) s Pi= (Uikffkj — 0;i0)/A(0) (1.12)

in which A(o) is the determinant whose elements are the elements of g;;.
Similarly,

0= (pjjpkk - ijpkj)/A(P) » 0= (pikpkj = PiiPr)/A(p). (1.13)

In the absence of a magnetic field, 0;; and p;; are symmetrical, i.e. 0=
0> and this implies that orthogonal axes can be found, with reference to
which they are diagonal. In cubic, tetragonal or orthorhombic crystals the
edges of the unit cell are automatically axes with this property. In cubic
crystals o;; = 0;; = g,,, and both pijand g;; are isotropic - for all directions
of & J=0& and is parallel to &. In tetragonal crystals two diagonal
elements are the same, and in orthorhombic crystals all are different. Then
with reference to different axes the off-diagonal elements do not in general
vanish. Hexagonal crystals behave like tetragonal in that g, along the
hexad axis, is different from the other two which are identical.

When Bis present o;;and p;; are not in general symmetrical, and require
all nine elements of each for a complete specification. Quite frequently,
however, the coupling between longitudinal and transverse effects is small
enough to be neglected; that is to say, &, applied parallel to B produces only
J, with negligible J, and J,, while if & lies transverse, in the plane normal to
B, 50 also does J, though not necessarily parallel to &. This verbal -
description is the same as putting o,,,0,,, 0y2, 0., all equal to zero; and
similarly for the same components of p;;. Then (12) may be written

pxx = }’Y/Al(o-)’ pyy = axx/A,(a): pzz = l/azz’}

pxy == axy/Al(a-)’ Pyx= — a'yx/A'(a-)’ (1.14)

——
o
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6 Survey of basic principles

where
1 .
A(0) = 0420,y — 05,0y

and, of course, similarly for inverting p;; into o;;.
The behaviour represented in fig. 1 may be written, by use of (9),

Prx=Pyy=1/0o and p,,= —py,=0:T/0
Also, since the conductivity along the direction of B is unaffected,
p..=1/a,, and there is no longitudinal-transverse coupling. Hence
(14) applies here, and

Oex =0, =00/(1+7?) and o=

(1.15)

— Oy = _‘YUO/(I +Y2) (116)

where y = w,7. Alternatively, we may use (9) to write
(1.17)

e =0,,=0oC082p and 0,,= —0, = —300sin2¢.

When the direction of & is predetermined, rather than J as in fig. 1, the

corresponding diagram is that in fig. 2, the semicircle on which the end of J

lies being drawn with diameter 6,6 With increase of B the magnitude of J

decreases steadily according to (16), but the resistivity p,, remains constant
since the component of & parallel to J decreases at the same rate.

Gy
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Figure 1.2 Relationship between J and & for a quasi-free electron gas in

transverse field B.
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uctivity and resistivity tensors

17) the signs of o, etc. depend on the sign of w,t. In the diagrams
where cartesian coordinates are used or implied, z and B will
herever convenient, out of the page. A free electron moving in the

of (9), e page describes an anticlockwise orbit. The Hall coefficient Ry,
(1.15) as having magnitude |p,,/B,|, is conventionally taken to be negative
’ electrons and for any conductor in which ¢ has the same sign as for a
unaffected, ectron metal. Only rarely shall we be interested in the sign of Ry, and
ng. Hence ;ib]e will be taken to maintain a consistent convention — the sign can
y be adjusted by inspection at the end of any calculation.
-9?) (1.16) real metals, if B happens to lie.along an axis of threefold or fourfold
imetry, o;; automatically possesses the properties represented in (14),
invariant with respect to rotation of the axes around B. For rotation
> (L17) hrough ¢ makes the following transformations:
fegr;;’;fh; 4\ Orx = 05 COS> ¢ — (0, + 0,,) COS ¢ sin  + 0,,sin? ¢
itude of J and , _ .
constant ; Oxy = 04, COS° ¢ + (0, — 0,,) cos ¢ sin ¢ —o,,.sin? ¢.
ite.

If the axis has threefold symmeiry, putting ¢ = 120° must leave o, and Oxy
unchanged, and it is easily seen that this requires g, = o, and Oxy= —0,4
similarly for ¢ = 90°, if there is fourfold symmetry about B. Also there is no
longitudinal-transverse coupling and ¢;; is specified by only three compo-
nents which we shall frequently write as ¢, =0, =0,,0

! 02 = 0xy= — 0Oy,
and g3 = 0,,; that is to say,

g, g, 0
gij=|—0, a6, 0 (1.18)
0 0 oy

and correspondingly for p; -

It is sometimes convenient to treat the plane normal to B as a complex
plane in which & and J are represented by complex numbers. They are
linearly related by complex ¢ or p,0=0,—10, and p=p, —ip,. The
negative sign arises because Jy=0,,6,=Im[6&] when & lies along the

real axis. The inversion of ¢ into p is now a simple matter of complex
algebra;

p=1/5=(0, +i0,)/(0? + 02) (1.19)

so that p, = g,/(0} + 03) and p, = — 0,/(6? + ¢2) in agreement with (14).
Corresponding to (15) and (16) we have, for a free-electron metal (for which
gas in 7>0),

p=po(l—1y) and o=o0y/1—iy).

(1.20)




