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In this chapter we consider an important transport problem—
the electrical conductivity of metals in a magnetic field. A large
effort of theoretical physicists in recent years has gone into the deriva-
tion of improved solutions to transport problems, in gases, plasmas,
and metals. Pioneer papers dealing with the quantum theory of
charge transport in metals include those by J. M. Luttinger and
W. Kohn, Phys. Rev. 109, 1892 (1958) and by I. M. Lifshitz, Soviet
Phys.—JETP b, 1227 (1957). The classical theory of magnetore-
sistance is developed rather fully in the books by Wilson and by Ziman.
In Chapters 16 and 17 we treat several interesting, but somewhat
complicated, problems by classical methods. But the startling
highlights of the observed magnetoresistive phenomena in solids can !
be elucidated qualitatively by relatively elementary methods. The
analysis of the experimental results bears directly on the shape and
connectivity of the fermi surface.

By magnetoresistance we mean the increase in the electrical resist-
ance of a metal or semiconductor when placed in a magnetic field.
The effect of greatest interest is the transverse magnetoresistance,
which is usually studied in the following geometrical arrangement: a
long thin wire is directed along the z axis, and a d-c electric field E,
is established in the wire by means of an external power supply. A
uniform magnetic field H, is applied along the z axis, thus normal
to the axis of the wire. The most interesting experiments are those
carried out at low temperatures on very pure specimens in strong
magnetic fields, as here the product |wc|'r of the cyclotron frequency
and the relaxation time may be >>1. In these conditions the details
of the collision processes are suppressed and the details of the fermi
- Surface enhanced.

In the geometry described, which we shall refer to as the standard
 geometry, the effect of a weak magnetic field (Jwo|r < 1) is to increase
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the resistance by an additive term proportional to H 2, The additive
term may be of the order of magnitude of (wer)?:

R(H) — E(0)
(1) E©)

=~ (wer)

On dimensional grounds we could not expect much else, bearing in mind
that a term linear in H is inconsistent with the obvious symmetry of
the problem with respect to the sign of the magnetic field. We note
(ISSP, p. 238) that in copper at room temperature the relaxation time
is ~2 X 10~ sec; for m* = m and H = 30 koe we have el =8 &
% 1011 sec™), so that |wc|r =~ 0.02. At 4°K the conductivity of a
fairly pure crystal of copper may be higher than at room temperature
by 103 or more; thus 7 is lengthened by 103 and in the same magnetic
field |w|r = 20.

In very strong fields, that is, for I‘*’cl'f > 1, the transverse magneto-
resistance of a crystal may generally do one of three quite different

things.

ApH
Po

(a) The resistance may saturate, that is, may become independent
of H, perhaps at a resistance of several times the zero field value.
Saturation occurs for all orientations of the crystal axes relative to the
measurement axes.

(b) The resistance may continue to increase up to the highest
fields studied for all crystal orientations.

(c) The resistance may saturate in some crystal directions, but
not saturate in other, often very nearby, crystal directions. This
behavior is exhibited as an extraordinary anisotropy of the resistance
in a magnetic field, as illustrated by Fig. 1.
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Crystals are known in all three categories. We shall see that the
first category comprises crystals with closed fermi surfaces, such as
In, Al, Na, and Li. The second category comprises crystals with equal
numbers of electrons and holes, such as Bi, Sb, W, and Mo. The third -
category comprises crystals with fermi surfaces having open orbits for
some directions of the magnetic field; this category is known to include
Cu, Ag, Au, Mg, Zn, Cd, Ga, T], Sn, Pb, and Pt. The value of mag-
netoresistance as a tool is that it tells us whether the fermi surface i 2
closed or contains open orbits, and in which directions the open orbits.
lie. There are geometrical situations possible for which open fermi:
surfaces do not contain open orbits.

Many interesting features can be explained by an elementary dri
velocity treatment or by simple extensions thereof. We give th
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‘Sz'ngle Carrier—T-ype Isotropic Effective Mass and Constant Relazation
Tm%e. 'The equatlon of motion of the drift velocity of a gas of carriers
having 1sotropic mass m* is, according to I.SSP, Chapter 10,

®3) m*(V-i—%v):e(E-}—%va),

“.fhere 7 is the relaxation time of the charge carriers. The relaxation
time ig approximately related to the mean free path A by A =~ Fr;lr
Where m 1s the mean magnitude of the particle velocity. We take H

a elementary drift'
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in the z direction. In the steady state v = 0, so that

() v=%<E—|—£va).

If we set

5) L =et/m*; §=pH =eHr/m*c= —wg,
then (4) becomes

(6) vz = pli; + fvy; vy = pEy — fv; v, = pE,.

Thus, on solving for v, and v,,
(7) vy = pE; + #EEy - 527)2; Vy = IJEy — ntlE, — Ezvu;

or

®)  v= Bt EB) vy = (B, — £,

The current density component j\ is obtained from the velocity
component v, by multiplying by ne, where n is the carrier concentra-
tion. The conductivity tensor component o), is defined by

(9) j)‘ = U)‘,E,.

From (8) we have, for H || z,

ney

0
= -t 1 0
1+£2\ ¢ o

(10) G

The components satisfy the condition

(11) on(H) = oa(—H),

as a general consequence of the theory of the thermodynamics of

irreversible processes.

In our standard geometry the boundary conditions permit current:

flow only in the z direction, thus

(12) Jy =J. = 0.
From (8) we see that the boundary conditions can be satisfied only
(13) E, = tE,; E,=0.
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thus in this geometry the effective conductivity in the z direction as
calculated on our model is independent of the magnetic field in the z
direction, even though the conductivity tensor components (10) do
involve the magnetic field. That is, our model gives zero for the
transverse magnetoresistance.

The resistivity tensor 7 is the inverse of the conductivity tensor,
so that E\ = p,,j,. Thé components are given by

(15) Ay = Ay /A,

where A is the determinant of & ; Oy, is the Av-th minor; and

_ (nen)?
(16) A= 1t £
Thus for & given by (10) the resistivity tensor is
1 [ —¢ 0
(17) p=—{E 1 0}
ner\o 0 1

This is consistent with (6), from which p is most easily found. For
the standard geometry with Jy = 0 we have from (17) that

1. § . H, .
(18) E, = nepls By = nepls = nele = §E.,
in agreement with (13) and (14).

The absence of magnetoresistance on this model in the standard
geometry is the result of the hall electric field E,, which just balances
the lorentz force of the magnetic field. The balance can be maintained
only for the one kinematical quantity v included in the equations of
motion. But usually the relaxation time depends on the speed v;
of an individual carrier, so that we cannot expect to describe the
motion of the carriers in terms of a single drift velocity. Then the
cancellation will not take place. The experimental situation is that a
transverse magnetoresistance is always, or nearly always, observed.
A simple and important alteration of the drift velocity model is to
introduce a second carrier type. With two carrier types the identical
hall electric field cannot rectify the orbits of both carrier types at once.
This is an important practical situation—the two carrier types may be
electrons and holes ; s electrons and d electrons; open orbits and closed
orbits; etc.

Two Carrier Types—High Field Limit. There is a special value in
treating the problem of two carrier types in the high field limit. In

any field the steady state drift velocity equations are, by analogy
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with (4),
(19) vi = (eri/m}E + (ery/mic)vi X H;
(20) Vo = —(ery/m3)E — (erz/m¥c)ve X H;

where the carriers of type 1 are taken to be electrons of effective
mass mf, relaxation time r;, and concentration n;.. The carriers of
type 2 are taken to be holes. We now consider fields such that
lwclln > 1 and |w62|r2 > 1. Then we can neglect vi, v, when they
appear on the left-hand side of (19) and (20), whence for the z compo-
nents of these equations we have

i H H
Rt (21) E; + ‘; vy =0; E, + —(; vgy = 0.
= Thus
(22) Jy = mievyy — noevyy = @}—Tnge—c B,

whence

(23) oyz = (ma — my)ec/H.

This is a crucial result, because it shows that for equal numbers
of holes and electrons o,, = 0. But if o, = 0, there is no hall
voltage Ey, as j, = 0 without benefit of an E,. Without E, the effec- -
tive resistivity becomes simply 1/o,,, where o, is given by (10) and |

in this limit
~ e (L L)
= Z 5 ] ]

where n = n; = ne. Thus the transverse magnetoresistance does not
saturate if there are equal numbers of holes and electrons.

Divalent metals having one atom (and two valence electrons) per
primitive cell will necessarily have equal numbers of holes and electrons -
(n— = n,), provided there are no open orbits. There is one point in k
space in each Brillouin zone for each primitive cell in the crystal. -
Equality of electron and hole concentrations can also occur in metals
of odd valence if the primitive cell contains an even number of atoms.
Under these conditions it is observed that the transverse magneto-
resistance does not saturate. The topology of the equality of electron
and holes is easily understood in two dimensions; see, for example
Fig. 2, where the fermi surface has been constructed with parts in tw
zones, but with the total filled area just equal to the area of one zone

(24)
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FIG. 2. (a) Fermisurface in two dimensions enclosing an area equal to the area
of one Brillouin zone. (b) Hole orbit as connected. (c) One electron orbit as
connected.

This result (23) holds also for a general fermi surface, at least
in the semiclassical approximation developed in the preceding chapter
for the dynamics of an electron in a magnetic field. We consider a
thin section of an electron fermi surface, bounded by planes normal
to H, with « states per unit area of the section. In constant fields

H, and E, the energy € of an electron in the section changes according
to

(25) ¢ = e,B, = —ck,E,/H,

because k, = — (e/c)v.H , if we may neglect collisions. Thus the shift
of the fermi surface from equilibrium is given by

(26) Ae = —ck,E,/H,

within an additive constant. The resultant current in the y direction
is, integrating over the surface of the section,

a
@7) Jy = ae / dk, dkyj = —aec(B,/H,) | dk, dk,.
Yy
The integral on the right-hand side is just the area of the section, so
that J, is the number of states in the section times eck./H. For the
whole fermi surface we integrate over dk,, recalling that « [ dk, dk, dk,

gives the number of states in the volume. Thus the total current
density is

. ec
(28) Iv=17q (ny — n_)E,,
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where n 4 is the hole concentration and n_ the electron concentration.
For n_ = n, we have g, = 0, in agreement with (23), and by the
above argument the magnetoresistance does not saturate, in agreement
with experiment. This result is independent of crystal orientation and
explains the second variety of magnetoresistive behavior, as enumer-
ated earlier.

INFLUENCE OF OPEN ORBITS
It is a remarkable experimental fact that in some crystals the
magnetoresistance saturates except for certain special cerystal orien-
tations. The absence of saturation in certain directions may be
5 explained in terms of open orbits. In strong magnetic fields an open <
an! orbit carries current essentially only in a single direction in the plane
normal to the magnetic field; thus the open orbit cannot be saturated
by the field. Suppose that for a given crystal orientation there are
open orbits parallel to k.; in real space these orbits carry current
parallel to the y axis. We can associate a conductivity ¢, with the
open orbits; let us write the open-orbit conductivity as equal to sneu;
this defines s. The high field limit of the conductivity tensor (10) is

2—2 E_l O
(29) gmne| —£70 g2 0),
o 0 1

not considering the contribution of open orbits. .Werecall that ¢ « H.
With the contribution of the open orbits we have

E—Z E_l 0
(30) Gmep| —£1 s ¢}
0 0 1

Here we have dropped £~% in comparison with s in the term oyy. We
have assumed for convenience that o, = 0 = ¢,,; this is not the most
general situation. The applicability of (29) and (30) as high field .
limits is demonstrated by Pippard, LT P, pp. 93-95. We note that an
open orbit parallel to k. has an average velocity component only in the
y direction and does not contribute to oy, 0.5, etc. The strength
of the magnetic field does not affect the average carrier velocity vy
on the orbit; the field strength only affects the rate &, at which the
open orbit is traversed in k space.

With (30) we obtain j, = 0 when

I
l

E,
(31) - ? + sEy =0, or By
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The resistivity does not saturate, but increases as H2 Crystal dis-
tributions tend to reduce the exponent towards 1. We have thus
accounted for the third variety of magnetoresistive be
nonsaturation only in special crystal orientations.

Suppose the crystal is oriented so that the open orbit carries current
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For this orientation the magnetoresistance saturates.
If the open orbit runs in a general direction in the zy plane, the
conductivity tensor has the form, again in the limit E>1,
ssin®f + £-2 —ssinfcosf + ¢~ 0
= nel| ssinfcosf — £-1 scos?f + £72 0
0 0 1
This gives j, = 0 when E,=(£' ~ ssinfcos0)E, /(s cos?0 + £72)
for 6 # 0; we have

_ . —2, (ssinfcosg — ¢-1)?
(37) Je = ne;u{s sin’f + ¢2 4+ 500 1 12 E,
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Thus the magnetoresistance saturates except when the open orbit carries
current almost precisely parallel to the y direction. By the geometrical
rules discussed in Chapter 11 this requirement is that the orbit in k
Space must run in the k, direction.

The circumstance that the magnetoresistance saturates in suffi-
ciently strong magnetic fields, except when there are open orbits in the
k. direction, explains the extraordinary anisotropy of the transverse
Magnetoresistance observed in single crystals. The anisotropy is a
striking feature of the experimental results, as illustrated for gold in
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Tig. 1. Thus high-field studies of the angular dependence of the
transverse magnetoresistance in single crystals can provide information
on the presence of open orbits and on the connectivity of the fermi
surface. In directions in which open orbits exist the resistance does
not saturate; in other directions it does, except in special directions
in which the metal may simulate a two-band metal with equal numbers
of electrons and holes.

TRANSPORT EQUATIONS FOR MAGNETORESISTANCE

The Chambers or kinetic formulation of the transport equation is
rather more revealing for the magnetoresistance problem with a general
fermi surface than is the usual iterative formulation of the boltzmann
method, in which magnetic effects appear only in second order. We
first work with a version of the theory linearized in E.  If the distribu-
tion is f = fo + f1, where f, is the equilibrium distribution, then the
electric current density is

) 2e 5 2e dfo
= )/ = - Sk v —
(38) j (21r)3/d c vf, (27)3/dl vde A€

where A€ is the mean energy gained by the electron from the electric
field E in the time between collisions. It is assumed that immediately
after a collision the electron is in the equilibrium distribution. Then

b

(39) AE = ¢ /_Ow dtE - v(t)e'l",

if the relaxation time r is a constant. Here o~/ is the probability
that the last collision took place at least a time [¢| from the next
collision, taken at ¢t = 0. It is a simple matter to generalize (39)
to problems in which 7 is known as a function of k.

The general nonlinearized result of Chambers [Proc. Phys. Soc.
(London) A65, 458 (1952)] for the distribution function is

¢ dt’ , Lods
(40)  f= o 7y T — Ae(®)) exp (‘ /, T(k(s))>’
where
(41) ae= [ aF v

is the energy gain from the force F between times ¢ and ¢ in the
absence of collisions; 7 is the relaxation time ; and fy is the equilibrium
distribution function. A proof is given by H. Budd, Phys. Rev. 127, 4
(1962), that (40) satisfies the boltzmann equation.

An electron in a high magnetic field will traverse a closed orbit
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many times between collisions and the integral (39) will approach zero
for the velocity components in the plane normal to the magnetic field
H; the component parallel to H (= H.) maybe replaced by the average

(va(kg)) taken over the orbit at constant ky. Thus if the magnetic
field is in the z direction,

(42) Ozz = Ozy = Oyy = 0y = (;
2¢® 3 dfo
(43) Oz = @5 /d k v,(v,) 2
This value of o, for H = « is in general lower than the value
262 dfo
4 22(0 kv, ==
(44 "()(27)31/‘1 e

for zero magnetic field by an amount depending on the anisotropy of

v, around the orbit. Thus there is longitudinal magnetoresistance,
which always saturates.

If open orbits are present in the Fk, direction, then (v;) = 0, but
(v) # 0. Then o, 0 in the high-field limit, just as found in (30).
Let us apply the kinetic method to transverse magnetoresistance
in weak magnetic fields such that ,wc’T K 1. We are concerned with

/_Ow dt v (t)et!”,
for constant relaxation time . We expand
(45) vn(t) = 2,(0) + ﬁ)ﬂ(o) + %tzi)'”(O) T

The integrals are trivial and we have

46)  [° diue’ = r,(0) + r%,(0) + £%5,00) + - - - |
As an example, consider

2¢2 dfo . 5
(47) Ozy = W /dsk Uz EE— (rv, + T2vy + T"‘vy + -
The term in v, vanishes on integration, by symmetry. The term in oy
for a free-electron gas is obtained by using

(48) mo, = — 2 v2H;
c

Uy = wely.

Thus to O(H)

2¢? df
49 == .2 3 p. 2 20 _
(49) Ozy @) WeT /d kv, : wToz4(0).
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The term of O(H?) in o, or gy, is obtained by evaluating i, for
example. We have

(50) iy = @by = — w0y,
so that
(51) Tyy = oyy(0) — (‘-"07)2‘71/1/(0)-

These results for the free-electron gas agree to the appropriate
order with the drift-velocity treatment given earlier, but the present
formulation can be applied to general energy surfaces. Ior example,
to evaluate o, we need
d% eH(ae d% 9e azs>

"ok, ok, ¢

(52) Un = 3k, ok ok, ok, ok,

whence to O(H) we have a well-known result:

(53)

o — 2e? ) eHTzfdak% de [ de 3% _ de 9%
xy (277)3 c de | dk,\ dk, dk, dk, Ok, 3ky2
For w, > kpT and w,r >> 1 an oscillatory behavior is observed in the
conductivity components. The quantum oscillations in transport
properties have the same origin as the susceptibility oscillations in the
de Haas-van Alphen effect considered in Chapter 11.

PROBLEMS

derivation of this result is quoted by Chambers in The fermi surface, Wiley.
2. Discuss the magnetoresistive properties of a conductor with a fermi sur-
face in the form of an infinite circular cylinder.
3. Consider the magnetoresistance of the two-carrier-type problem for all
values of the magnetic field, but assuming m, = m»; 71 = 75. Show that for
the standard geometry

(n1 — ny)?

(nx -1 ‘ﬂz)2

(54) jz = (n1 + ng)ep.l i £ |:1 + Ez] E..

1. Show that the transverse magnetoresistance vanishes for a conductor
with an isotropic relaxation time and an ellipsoidal mass surface. An elegant -

Phys. Rev. 128, 82, 2524 (1
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