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28 Survey of basic principles
4 Elem

From (37), disregarding signs, - gt present
i nttoc
0., = (€/4n’h) jodSy — (e/4n®B) Jkydsy. 5122 tt'r‘ze both
ns and »

confer positive

electrons and
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Since dS is directed normal to the Fermi surface, dS, fora slice ok, thick can
be written as dk,dk,, and the integral becomes 2 line integral, §kydkx, which
is just #/,, the area of the k-orbit. Then, since &/ (Sk,/An> is the number of each would be

electrons per unit volume whose k lies in the slice, we may integrate over the ‘ Thus for the ty
o=0

whole Fermi surface:
(1.50)

L BA st i

Oy = ne/B. in which y isiwi
We shall see later that frequently 0 and o, vary in high fields as 1 /B2, signs in the der

and then, as (14) shows and the free-electron gas illustrates, o=(n_

Pyx~ 10gy~ B/ne, (1.51) inwhichc=n_,
so that the limiting form of the Hall constant is the metal is saic
Ry~ /e, (1.52) The resistivit
the same as for a free-electron gas, even though the energy éurfaces may be p= ’%M

entirely different. All we ask is that they be closed, so that 7, has a meaning

for all sections.
The expression (52) applies at all values of B to a free-electron gas, butin

general only in the limit of high B; in the next section we shall meet an
example where it describes the high-field behaviour well but gives even th
sign of the Hall field incorrectly when B is smaller. There are many ways 0
deriving (52),2% some of which make use of the fact that the result i
independent of scattering, which may therefore be ignored, if convenient I
fields &, and B, any charged particle has drift velocity v, =&./B
superimposed on its orbital motion, and (50) is an expression of thi
behaviour. But there is no need to g0 further into alternative approaches t

the simplest of the problems in magnetoresistivity.
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Elementary extensions of the free-electron theory

1. Electrons and holes

The concept of a hole, with properties that simulate a positively char
electron, is too well established in semiconductor physics to need carcig
exposition at this point. All the same, its use in connection with me
sufficiently different in some respects from what is usually understoo
we must discuss it in more detail at the right time, in chapter 3. Ttiseno




for a slice ok, thick can
integral, §k,dk which
,/4n> is the number of
:may integrate over the

(1.50)

-y in high fields as 1/B2,
illustrates,
(1.51)

(1.52)

¢ energy surfaces may be
;o that &, has a meaning

a free-electron gas, but in
section we shall meet an
ur well but gives even the
t. There are many ways of
he fact that the result is
»ignored, if convenient. In
drift velocity v, = &,/B.
is an expression of this
 alternative approaches to

7ity.

ton theory

nulate a positively charged "
stor physics to need carch‘ll
n connection with metals 15 ¢
tis usually understood that ;}
ne, in chapter 3. Tt is enough

S

Elementary extensions of the free-electron theory 29

at present to consider a metal in which there are two independent types of
particle, both behaving classically, and differing only in charge, ie. n_
electrons and n, holes per unit volume. If each were present alone, it would
confer positive conductivity on the metal in zero magnetic field, o _ for the
electrons and o, for the holes; and in the presence of a transverse field B
each would behave according to (16), or (20) if complex notation is used.
Thus for the two together,

o=oc_J(1—iy_)+o. /(1 +1iy,), (1.53)

in which y is written for |w 7| and the opposite charges are reflected in the
signs in the denominators. By use of (3) we rewrite this:

o=(n_e/B)[y-/(1 —iy_)+cy. /(1 +iy.)] (1.54)
in which ¢ = n . /n_. If the density of holes equals that of electrons, ¢ = 1 and
the metal is said to be compensated.

The resistivity p is 1/o and looks more complicated:
B [y-+cys +7-v+0+ +ey )] —ily2 —cyd + (1 —cy2yi]
n_e (- + ey ) +(1—o)viyi '
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The low and high field limits are easily found by keeping only terms up to
y2(oc B?) for the former, and only the highest orders in y for the latter. Then,
writing p, doe (6_ +0,)" ", and p, for p,,, the real part of p, we have

(P1/Pohow~ 1 +cr-y+(r- +7:)* /- +cy. ), (1.56)
describing a quadratic magnetoresistance, Ap,/p, oc B2 Unless ¢ =1 the
increase is not continued indefinitely, but eventually saturation occurs at a
value p:

Pw/Po~ AJ(1 —c)?, where A=(o_+a,)(l/o- +c*[a). (1.57)

In a compensated metal (55) simplifies, by use of (54) and without
approximation, to a pure-quadratic effect:

(pl/po)comp= 1 +’Y—Y+' (1.58)

- When compensation is not quite perfect, so that ¢ = 1 — ¢ (¢ « 1), the high
 field limit (57) is of the order of 4/¢2, which may be very large but is not
reached until B itself is large. The quadratic rise described by (58) would
¥1eed to continue until y ~ 2/¢ before it met the saturation value. This can be
1.11ustrated by choosing y, =y_ =7 in (55) when, without approximation,

Pilpo=(1+y*)/[1 +y*e*[(1+c)*]. (1.59)

Examples are shown in fig. 16. When ¢ is small the initial stages of the curve
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Figure 1.16 Transverse magnetoresistance of a metal containing both
electrons and holes, according to (59); values of c, i.e. n,/n_, are given
beside each curve.

differ little, following (58), so that Ap,/p, ~ (w.7)? as has already been noted
as an empirical relation. When, as in bismuth,® the quadratic rise has been
found to continue until p,/p, > 10, & must be less than 10~3; with only
about 1077 electrons per atom, the material must have been pure enough
for the numbers of electrons and holes to differ by, at most, 10”8 per atom.
As is well known in semiconductor physics, this degree of purity demands
great attention to sample purification. :

The same is true for the Hall effect, as described by the imaginary part of
(55). Unless ¢ =1 the high-field limit is

Pyx~ Bfne(l —c)=Ble(n_ —n.) (1.60)

which is a generalization of (51). When ¢ « 1 a high field is needed for this ]
limit to be reached; until this is achieved (and always when ¢ = 1), terms of &

lower order in y must be kept when approximating to (55). If ¢ = 1, without
approximation,

Py==(B/n-e)(y- —v. )y +74). (1.61) &
In bismuth the electrons are considerably more mobile than the holes, and :
?->7.. In a perfectly compensated sample, then, one expects from (61) -
that the sign of the Hall effect will reflect the dominance of electrons in the
conduction process. A not-very-pure sample, however, in which holes
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slightly outnumber electrons must ultimately settle down in the form
determined by (60) with the Hall field of opposite sign. In the end numbers
are more important than mobility. Reversal of the sign of the Hall effect is
not uncommon in bismuth samples.3 [t i always found in aluminium, 3V
which is not compensated and has more holes than electrons; it is this fact
that controls the high-field behaviour. At low fields, however, it behaves
more like a free-electron metal with three electrons per atom. The simple
model used here is now inadequate, and the same must be said of the
curiosities of Hall ‘constant’ in magnesium, zinc and other metals suffering
magnetic breakdown. In later chapters these matters will receive more
realistic appraisal.

In an uncompensated metal the Hall angle, ¢ in fig. 1, rises to n/2, while
in a compensated metal it tends to remain small and eventually falls to zero.
This behaviour follows immediately from the high-field expressions (57)
and (60) for the uncompensated metal, and (58) and (61) for the com-
pensated. In the former tan ¢ oc B, in the latter tan ¢ oc | /B. The Hall effect
may be hard to measure in a compensated metal since the transverse
component of & is commonly much smaller than the longitudinal. The
reverse holds in an uncompensated metal, where the Hall field may be large
and create difficulties in measuring the longitudinal component and hence
the magnetoresistivity. Techniques for overcoming the problems, and the

new problems raised by the techniques themselves, are the subject of
chapter 2.

2. Anisotropic scattering

The simple argument incorporated in fig, 1 depends for its validity on the
relaxation time being independent of the direction of J. Since currents in
different directions involve different displacements of the Fermi surface,
Variations of scattering rate over the surface are likely to cause anisotropy
1 the relaxation rate of J, unless crystal Symmetry so constrains those
ations that g, j must be isotropic. Most cases of anisotropic scattering
quire long and tedious analysis to work out fully, but a single simplified
‘del will serve to show that the effects to be expected are rather
ignificant in comparison with most of the examples of interest, e.g.
BS-5,6 and 10. Even with the most drastic simplification it is still desirable
Icentrate on one feature only, the ratio Pol/Po-
onsider then 3 two-dimensional free-electron gas for which the
ability of ap electron being scattered catastrophically in time ¢ varies
$ direction of motion, ¢, as (p, +P1cos2¢)dt, p, and p, being
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