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The Electrical Conductivity of Transition Metals

By N. F. M ott, H. H. Wills Physical Laboratory, University of
Bristol

(<Communicated by R. H. Fowler, F.R.S.— Received September 23, 1935)

1— In a recent paper* certain properties of the transition metals Ni, 
Pd, and Pt and of their alloys with Cu, Ag, and Au have been discussed 
from the point of view of the electron theory of metals based on quantum 
mechanics. In particular, a qualitative explanation was given of the 
relatively high electrical resistance of the transition metals. It was 
shown from an examination of the experimental evidence that the con
duction electrons in these metals have wave functions derived mainly 
from s states just as in Cu, Ag, and Au, and that the effective number of 
conduction electrons is not much less than in the noble metals. On the 
other hand, the mean free path is much smaller, because under the influence 
of the lattice vibrations the conduction electrons may make transitions 
to the unoccupied d states, and the probability of these transitions is 
several times greater than the probability of ordinary scattering. Since 
the unoccupied d states are responsible for the ferromagnetism or high 
paramagnetism of the transition elements, there is a direct connexion 
between the magnetic properties and the electrical conductivity.

The purpose of this paper is as follows: in §§ 2, 3, and 4 we develop a 
formal theory of conductivity for metals, such as the transition metals, 
where two Brillouin zones are of importance for the conductivity; in 
§ 5 we apply the theory to show why, at high temperatures, the temperature 
coefficient of the paramagnetic metals Pd and Pt falls below the normal 
value; and in § 6 we discuss the resistance of ferromagnetic metals, and 
show in § 7 qualitatively why constantan (Cu-Ni) has zero temperature 
coefficient at room temperature.

2— The element nickel has in the lowest state the electronic configuration
(3d)8 (4s)2 * * *, but states with the configurations (3 (4s)1, are separated
from it by energies of only a few electron volts. In our theory we shall 
use essentially a “ one-electron ” picture, we treat the electrons, in 
the first approximation, as moving independently of one another in an
electrostatic field. We must therefore suppose that, for a single electron

* Mott, 6 Proc. Phys. Soc.,’ vol. 47, p. 571 (1935), referred to as paper A.
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moving in the field of the nickel atom, the 3 and 4s states have energies 
near together.

In the field of the crystal, instead of quantized energy values for the 
electron, we have bands or “ zones ” of allowed energies, a zone (or 
group of zones) corresponding to each state of an electron in the isolated 
atom. For nickel the 3 dand 4s zones must overlap (otherwise the 3d 
band would be full, containing all the electrons, and the metal would not 
be a conductor). Thus, in the language of the electron theory of metals, 
the surface of the Fermi distribution lies in two zones—as also is the case 
for divalent metals. As explained in paper A, in nickel there are about 
0-6 electrons in the 4s and 10 — 0-6 =  9-4 in the 3d band. Similar 
results hold for the 5s and 4 dstates of palladium and the 6s, 5 states of 
platinum.*

The theory already put forward in paper A to account for the high 
resistance of Ni, Pd, Pt is as follows. In the classical theory of Lorentz 
the conductivity of a metal is

where n is the number of electrons per unit volume, y. the mass of an 
electron, t half the time between collisions or “ time of relaxation.” In 
the quantum theory of conduction, as developed for the monovalent 
alkali and noble metals,f this formula remains true with the following 
modifications; for y. we must understand the “ effective ” mass of an 
electron in the crystal lattice, which will in general be greater than the 
actual mass {x0 of a free electron. Secondly, t must be calculated by the 
methods of quantum mechanics, so that 1/x is proportional (for T >  0 D) 
to :

(1) The mean square displacement, due to thermal motion, of the 
atoms from their mean positions. This is proportional to T/M 0D2, 
where M is the mass of an atom, 0 D the characteristic temperature.

(2) The density of states N (E) at the surface of the Fermi distribution, 
i.e., for the occupied states of highest energy.

According to the theory, the electrons in all states belonging to zones
* It is possible that in one band there may be wave functions derived from a mixture 

of s and d  wave functions (Jones, Mott, and Skinner, 4 Phys. Rev.,’ vol. 45, p. 379
(1934) ). For our theory it is only necessary that at the top of the lower band the 
wave functions shall be mostly d, and at the bottom of the upper band mostly s. 
Cf. a paper on the wave functions of copper by Krutter, 4 Phys. Rev.,’ vol. 48, p. 664
(1935) .

t  Cf. the report by Sommerfeld and Bethe, 4 Handb. der Physik,’ vol. 24 (2), p. 499 
(1933).



which are not fully occupied can contribute to the electric current; 
therefore the d as well as the s electrons must be classed as conductivity 
electrons. The effective masses, however, will be very different; the 
conductivity electrons of copper and silver have been investigated by 
Fuchs* by the method of Wigner and Seitzf; he finds that they behave 
approximately as free electrons. The same should be true for similar 
fields of Ni and Pd; we shall thus assume for the s electrons

P, -  Po>

where [j.0 is the actual mass of a free electron. For the d electrons, on 
the other hand, owing to the small overlap of one d wave function with 
another, we must assume

EU >  Po-

In other words, the d electron takes longer to move from atom to atom 
under the influence of an applied field than does the s electron.

The conductivity of a transition metal will therefore be

-  =  T. +  T. (2)
rs rd

where ts, xrf are the times of relaxation for s and d electrons, (xs, y.d the 
effective masses, and ns the number of s electrons per unit volume. nd, 
as we shall see below, should be taken to be the number of positive holes 
in the d band rather than the number of electrons.

The low conductivity of the alkaline earths is usually explained as 
being due to the small overlap from the first Brillouin zone to the second, 
and thus to small values of ns and nd in a formula such as (2). For Ni 
and Pd we know from a variety of evidence (paper A) that ns = nd -  0-6 
Na, where NA is the number of atoms per unit volume; thus the high 
resistance of these metals must be due to a small value of ts. As we shall 
see, ts and are of the same order of magnitude, and hence the con
ductivity is almost entirely due to selectrons.

It is essential to the theory of the high paramagnetism^ of Pd, and the 
ferromagnetism J of Ni that the d band should be narrow compared with 
the 5 band, of the order of magnitude of one electron volt or less. Since, 
moreover, the number of electronic states in the d band is 10 per atom,

* ‘ Proc. Roy. Soc.,’ A, vol. 151, p. 585 (1935).
t  ‘ Phys. Rev.,’ vol. 43, p. 804 (1933).
t  Paper A; cf. also Peierls, ‘ Ergebn. exakt. Naturw.,’ vol. 11, p. 264 (1932); Slater,

4 Phys. Rev.,’ vol. 36, p. 57 (1931).
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it follows that the density of states per unit energy range is much larger 
in the d band than for free electrons. The recent determination of the 
specific heats of nickel by Keesom and Clarkf and of silver by Keesom 
and KokJ shows that the density of states at the surface of the Fermi 
distribution is about 20 times larger in nickel, where the d band is not 
full, than in silver, where it is.§

The large density of states is, of course, connected with the large 
effective mass; under certain assumptions to be discussed in the next 
section we may write

N (E) dE =  4 tz dE. (3)

Now the time of relaxation rs for s electrons is given by

1 /V =
where P is the probability of scattering. An s electron can be scattered 
in two ways: either to another s state or to a state. The transition 
probabilities are proportional to the squares of matrix elements of the 
type

j  4% AV tlq dT,

where AV is the perturbing potential due to the lattice waves, and 4i> 
4*2 the initial and final states of the electron. In the present state of the 
theory it is exceedingly difficult to evaluate these matrix elements in any 
way which seems physically significant; there is, however, no reason 
to believe that they are much smaller when the final state lies in the d 
band than when it lies in the s band. On the other hand, the transition 
probabilities for the two processes, as already stated, are proportional to 
the densities of states Ns (E) and Nd (E) for the two final states considered; 
Nd is much greater than Ns, and hence we conclude that transitions from 
the s to the d band are important for the determination of xs, and that 
ts will be much less than for the noble metals, where the d band is full, 
and only s—s transitions are possible.

In the next two sections we shall investigate in greater detail the scatter
ing probability P, and shall give a proof of (2).

t  ‘ Physica,’ vol. 2, pp. 230, 513 (1935).
X‘ Physica,’ vol. 1, p. 770 (1934).

§ Cf. Mott, contribution to discussion on Supraconductivity, ‘ Proc. Roy. Soc.,’ A, 
vol. 152, p. 42 (1935).
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3—The Scattering Probability

In the quantum theory of metals, each electron has a wave function 
of the form

'k  =  e <kr) uk (x, y,

where uk is periodic with the period of the lattice. The corresponding 
energies will be denoted by E (k).

In the usual quantum theory of conduction, a Debye model for the 
crystal is used; the electron is considered as interacting with a lattice 
wave of frequency v, and gaining or losing a quantum of energy /zv. 
For our purposes, since we are only interested in temperatures above the 
characteristic temperature 0, we may simplify the whole theory by 
using an Einstein rather than a Debye model for the crystal; we shall 
consider every atom as vibrating independently of the others with 
frequency v, where /zv =  A-©, and we shall calculate the probability that 
an electron is scattered by a single atom, and shall then sum for all atoms. 
Moreover, since the vibrating atom moves slowly compared with the 
electron, we shall treat it as though it were momentarily at rest, and 
therefore neglect altogether the change in the energy of the electron 
during the scattering process. These assumptions are not in the least 
necessary for our theory, but they simplify its exposition considerably.

Let V (r) be the potential in the neighbourhood of any one ion in the 
crystal. Then, if that ion is displaced a distance Z, in the x  direction, 
say, the perturbing potential which causes electronic transitions is

av =  s |Y .OX

By the ordinary methods of quantum mechanics, one finds that if the 
electron is initially in the state k, the probability that at time t it is in the 
state k' is

where

_1
/z2 f 4 V  av

2 ( 1 — cos Xr) 
X2 (4)

X =  [E (k ) -  E (k)]///.

This expression has a strong maximum for E (k') =  E (k), and to obtain 
a physically significant result one must integrate over it. The txansition 
probability may then best be expressed as follows: we draw in k-space 
the surface having the same energy as the state k (cf. fig. 1), and take 
an area dS on this surface, and a cylinder of volume dX, dS as shown.

3 c 2
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To obtain the probability that after time t an electron has made a 
transition to any state in this volume element, we must multiply (4) by 
the number of states in the volume dX, dS, namely,

dt dSI(2nf.

We n ow integrate over £; since we may write

E ( k ') - E ( k )  =  Z—J P ,

the differentiation being normal to the surface, we obtain for the prob-

Fig. 1—Part of surface of Fermi distribution in &-space.

ability P (kk') dS' that after unit time the electron has made a transition 
to the state k

P (kk') dS' = dS' 
4tz2/i AV 2 / dE 

/  dk'n- (5)

We see, as stated in § 2, that the transition probability is proportional to
dE
dk'„

i.e., to the density of states in the neighbourhood of the final

state.
The square of the matrix element in (5) is

l2 tyicd-v
2

Since we must sum over all atoms, we must take the mean value of £2,
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A—We must now prove formula (2), and hence give a more exact 
definition of t s, Td in terms of the transition _ probability (5). This can 
only be done if we make rather drastic simplifying assumptions. For the 
s electrons we set

E (k) =  ti2k2j2 [xs,

depending on the modulus kof k only. is thus the effective mass of 
an 5 electron. We shall treat the atomic d state as non-degenerate (this 
can be allowed for afterwards), and shall denote the wave vector of a 
state in the d band by j, j being so defined that j  = 0 corresponds to the 
state of highest energy. We shall assume also that the energy E (j) of a 
d state depends only on the modulus j  of j, and shall write it

E(j) =  E0 —> / / 2 | v

We must remember that fxd ;> [xs.
For the transition probability between one state and another we write, 

from (5)
P (kk') dS' =  |xs A (kk') (6)

where
A (kk') = 1

4ti V/3 J+V AV 2

and similarly for the transition probability from an to a state of equal 
energy

P (kj) dS} = y.d A (kj) dSjlj. (6.1)

We shall assume further that both A (kj) and A (kk') depend only on 
the angle 0 between k and j, or k and k', so that we may write

A ( kk') =  Ass (0) A (kj) =  AS(J (0).

Consider now the metal in the absence of a field. The probability 
that any electronic state is occupied is given by the Fermi function

m  = /. oo=e,._ J, +1 ■ e - e (k).
If an external field F is applied, say in the x direction, the wave vector of 
each electron increases according to the equation kx = ; hence the
rate of change of / (k) is initially

(d f \ df0 dE kx e¥
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for s electrons, with a similar expression for the d electrons. These two 
expressions must be equated to the rate of change o f /d u e  to collisions.

When a steady current is flowing, the probability that a state is occupied 
will no longer be given by/„ (k) but by the “ perturbed” Fermi functions 
f s (k), f d (j) for 5 and d electrons respectively. We shall write

fs(k) =  / o  (k) +  gs (k), f d (j) =  / 0 (i) +  ga (j).

Now, by the definition of the “ time of relaxation ” t s, we have

Ss ®  dt Ts’
which may be written

&<*) = dEy.s xTs h

which gives the change of the distribution function due to the field F, 
in terms of the time of relaxation t s.

We now calculate the rate of change of/  due to collisions, which has to 
be equated to (7).

We consider a volume element of k  space in the s zone. Let the volume 
element be situated at the point k, and let its volume be dk =  dkx dky dkz. 
Then for unit volume of the metal the number of electrons in states 
within the element is

2/s (k) dk

Owing to the thermal vibrations of the atoms, electrons make tran
sitions to states of practically equal energy; the number of such tran
sitions in which an electron leaves the volume element dk is, per unit time,

2/. (k) H  [ j  P (kk') {1 -  / ,  00}  +  f P (kj) {1 — f ,  (j)) rfS

The integration is over all surface elements S', Sy in k, j  space which 
have the same energy as the initial state.

Substituting from (6), (6.1), we have, for (9)

I  j A (kk') {1 -  / ,  (k')J d S  +  J5« f A (kj) {1 -  /„ 0)} rfS,].
( 10)

Similarly, we obtain for the number of electrons entering the volume 
element dk per unit time

2{1 - /  (k)} ^  f A (kk')Z(k') dS’ +  f A (jk )Z (j)^ s/|. (11)
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Subtracting (10) from (11) we obtain for the decrease, due to collisions, 
in the number of electrons in the volume element dk per unit time,
0 dk
~ 8tc3 B  ( A (kk') {/, (k) -  / ,  (k ')} dS' +  i t  |  A (kj) {/, (k) -  f d (j)} dSj .

(12)
The second term corresponds to the s-d  transitions, and is large, con
taining as it does the large factor (i.d (the effective mass of the d electrons).

The quantity (12) vanishes if, for f s and f d, we substitute the unper
turbed Fermi function / 0. Therefore, in formula (12) we may substitute 
gs for f s and gd for f d. Using (8) for gs and gd, we obtain finally for the 
decrease in the number of electrons in the volume element dk

2 dJ f  Co ^  h* I"tp - s f (kx -  A (kk') dS' 8tc3 dE h I kjxs J v *’ v '
+

J
7  — jx) A (kj) dSj
r s  r'd

(13)

This must be equated to the increase in the number of electrons due to 
the applied field, which is, from (7)

2 f k  /d f
8 tI3 dt Held

0 dk df0 e¥ ,
2 w k j . i ; k- ( 14)

Equating (13) and (14) and dividing by common factors we obtain

t ,  f (1 -  £») A (kk') dS‘ +  t8 it? %f A (kj) dSj 
J \ kx J *

j  f A (kj) Jx
J ' * (V

To simplify the integrals, we denote by 0 the angle between k, k' or 
k, j, by a the angle between k and the x axis, and by </> the angle between 
the plane kk' and the plane containing k and the x axis. Then,

kx — k cos a, k' x = k  (cos a cos 0 +  sin a sin 0 cos </>) 
dS = k2 sin 0

Carrying out the <f> integration, we have

f (1 -  *js) A ( kk') dS' =  2nk2| Ass (0) (1 -  cos 0) sin 0 dO
=k2ass (say)

| A (kj) dSj =  2 nj2j Asd (0) sin 0 dO

— P asal)(say)
| A (kj) j~ dSj —- 27t £ j 2 j Asd (0) cos 0 sin 0 dQ

= p a f 2)jlk, (say).
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The expressions a,„ a$d, etc., we consider to be all of the same order of 
magnitude.

Hence finally
7  [\xskass +  -  t„| = 1 .  (15)

By considering a volume element of j  space, i.e., in the d zone, we may 
obtain similarly

7  [ftdja„  +  -  Ts =  1. (16)

If now, as we assume, [J.d >  (xs, we obtain approximately from (15) 
and (16)

1/ * .=  V - J a « a ' (17)

=  +  a*)
/ X J a sd '

ts and rd are thus o f the same order o f magnitude, both depending on the 
effective mass of a delectron.

Writing out in full the expression for asda) we obtain

sin 0 dQ

tya dx
2h2 T 

k  M 02’

where 0 is the angle between the vectors k of the initial s state and j of 
the final d state.

With the assumptions made in this section, the density of states in the 
d zone is (cf. (3))

Nd (E) =  2\idj/h2;
we see, therefore, that

1/t. *  Nd (E)b_{, (19)
which is the required result.

The current due to the s electrons is

i =  e \ g s (k)vx ^ ± ,

where vx = kkj\xs is the velocity of an s electron. If ns — number of s 
electrons =  ^  (kmdxl2n)3, this easily reduces to

/ =  _  M 2 f  f t s ^  dE. (20)(jis J ah

Since df0jdE is a function which vanishes except in a range AT in the
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neighbourhood of E =  i.e.,at the surface of the Fermi distribution, 
and since further | (dfJdE) dE — — 1, this reduces to

/ =  nse2 F x

so long as xt can be considered constant in the range AT.

500 1000 1500
T° C

Fig. 2—Experimental values of R/R0 for various metals; from Griineisen, ‘ Handb.
d. Phys.,’ vol. 10, p. 16 (1928).

5—Resistance of Palladium and Platinum at H igh Temperatures

At high temperatures the resistance of Cu, Ag, Au, and also of W 
increases rather more rapidly with the temperature than a linear law 
implies*; for the paramagnetic elements Pd, Pt, and Ta, on the other 
hand, the increase is considerably less rapidf (cf. fig. 2). This behaviour 
may easily be explained in terms of the theory of the preceding section.

As we have seen, in order to calculate the resistance, we only need to 
know the scattering probabilities for electrons in a narrow range of

* Probably because ©n decreases as the solid expands.
f  The atomic susceptibilities are (x X 10e). Cu, —5-6; Ag, —20; W, +41;  

Pd, +550; Pt, +160; Ta, +150.
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energies AT, in which — d fjd E is finite, at the surface of the Fermi 
distribution. Now it is quite certain that the velocities, etc., of electrons 
in the broad .v-band may be taken as constant throughout this range, but 
at high temperatures it is possible that N d (E), the density of states in 
the dband, to which the s electrons make transitions, will vary appreciably. 
Since Nd (E) decreases with increasing energy,* we should expect the 
5 electrons with most thermal energy to be scattered less often than those 
with less energy. Thus the resistance of the metal increases less fast 
than it otherwise would.

The dependence of resistance on temperature can be discussed quanti
tatively on the basis of formula (20); we now assume that xs is not quite 
constant over the range of integration. Then by a well-known formula,f 
writing xs =  xs (E)

C is itself a function of T ; we havef

7T2 / d log N 
6 \  dE

where Co is the energy at the surface of the Fermi distribution at T =  0. 
Hence

• | t. (E) ^  dE =  xs (C0) +  |  (AT)2 [x" (Co)T (S o ) N r (Co) 
N (Co)

(21)

Now l/xs is proportional, of course, to the amplitude of the atomic 
vibrations, and hence to T, and also, as we have seen, to Nrf (E), the 
density of states in the d-zone. Further, N (E) is approximately equal 
to N,j (E), so that the factois in (20) and hence in the expression for the 
conductivity which contain T are

1_
T 1 +  ^  (AT)2i l l '  +  ^

(  X X2

Writing^ Nd (E) =  C V E0 — E, x oc 1 /Nd, this becomes

T 1 +  6̂ VT

* Because the band is nearly full, cf. paper A, p. 573. 
t  Cf.Sommerfeld and Bethe, loc. cit., pp. 346 and 429.
J The first of these assumptions should not lead to serious error for Pd and Pt, 

where the d  band is nearly full, but may be quite incorrect for Ta.
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where £T0 =  E0 — s0; or for the resistance

R — const. T 6 VT (22)

This formula is, of course, only valid if T js small compared with T0. 
We may call T0 the “ degeneracy temperature ” for the d shell.

In deriving this formula, we have neglected the factors which in copper, 
for instance, make the resistance increase more rapidly than T, and which, 
presumably, will be operative also in Pd and Pt. To compare our theory 
with experiment, we shall therefore express the theoretical result in the 
form:—

which gives

R
Ro

( -\R„

_R
R o  Cu

i - £ T \2'
6”\T0/ J

) — const. T3.
Ro'pt

(23)

(24)

A formula of the type (24) fits the experimental results for Pt well, as is
shown in Table I.

T able I
I li III

T3/column IIT (° K) (Ro L  “  fe)p t
571 0-17 1-1
111 0-4 1*2

1071 0-8 1-5
1271 1-4 1-5

From the observed resistances and formula (23) we may deduce T0;
we obtain

Pd Pt Ta
T0 2100° 3100° (2800°)

We may compare the value of T0 for nickel deduced from the atomic 
heat at liquid helium temperatures, namely* 1950°.

The specific heat due to the (/-electrons depends on T„, and is, assuming 
Nd(E)oc V (E o -E )

naF (T/T0),

where nd is the number of positive holes in the (/-shell, and

F =  \i?k  T/T0 T <  T0
=  ffc [1 -  0 • 0667 ... (Tq/T)1] T >  T0

* Discussion on Supraconductivity, loc. cit.
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For immediate values F can be calculated numerically4  Assuming 
n to be 0-6 per atom,§ the contribution of the ^-electrons to the atomic 
heat, with the above values of T0, is in cal/gm atom

H O o Pd Pt
500 1-2 M

1000 1-55 1-4
1500 1-65 1-55

The observed values of C„ (the observed atomic heat corrected for dilation) 
do in fact rise considerably above the value 5-98 for Pd and Pt,as Table II 
shows, though not quite so much as the theory requires.

Table II— Observed A tomic Heats (C„)
T °C Pd* Pt* Cut Agf Auf

500 6*594 6-38 6-2 6 0 6 0
900 7*072 6 1 3

1000 7*146 6-65 6-5 6 1 2
1300 7*251
1500 7*232
1600 6-8

* Jaeger and Rosenblum, ‘ Proc. Acad. Sci. Amst.,’ vol. 33, p. 457 (1930). 
f  The mean of several determinations, Euken, ‘ Handb. exp. Physik,’ vol. 8, 

p. 211 (1928).

The excess specific heat of platinum has been attributed by Born and 
Brodyl] to anharmonic terms in the potential energy of the lattice waves; 
such terms may make either a positive or a negative contribution to the 
specific heat. It is not at present possible to state how large this con
tribution is.

6— Resistance of Ferromagnetics

The resistance of nickel as a function of temperature and external 
magnetic field has been extensively investigated by Gerlach^j and his 
co-workers and also by Potter.**

Fig. 3 shows the resistance of nickel as a function of temperature. The 
sharp change in the temperature coefficient near the Curie point should

+ Mott, ‘ Proc. Camb, Phil. Soc.’ (inthe press).
§ Cf.paper A.
|| ‘ Z. Physik,’ vol. 6, p. 132 (1921); ‘ Handb. Physik,’ vol. 24, p. 675 (1933).
If Cf.Englert, ‘ Ann. Physik,’ vol. 14, p. 589 (1932), where other references are

given.
** ‘ Proc. Roy. Soc.,’ A, vol. 132, p. 559 (1931).
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be noted. It is found, moreover, that in the neighbourhood of the Curie 
temperature, the resistance decreases in a magnetic field, the change in 
the resistance being given by

(25)

where Act is the increase in the magnetization due to the field.
A qualitative explanation may be given in terms of the above theory. 

We have seen that the resistance of nickel is mainly due to conduction

300 400  500

Fig. 3—Resistance of nickel, in arbitrary units. Curve I, experimental values, from 
Gerlach, ‘ Leipziger Vortraeger,’ p. 21 (1933); Curve II, extrapolation of resistance 
curve observed above the Curie point; Curves III and IV, types of theoretical 
curve to be expected for a =  <jxand 0 respectively.

electrons being scattered by a vibrating atom into the d band. The 
conduction electrons may be considered to have their spins either parallel 
or antiparallel to an external magnetic field, and the probability that the 
direction of the spin is changed during the scattering process is negligible. 
Now at low temperatures, when the spontaneous magnetization of nickel 
attains its maximum value, all the unoccupied states (“ positive holes ”) 
in the d shell are those with spin direction antiparallel to the direction of 
magnetization.* Therefore it is only possible for of the conduction 
electrons to make transitions to the d band, namely those with spin anti
parallel to the direction of magnetization. On the other hand, above the 
Curie temperature, positive holes with both spin directions will be present,

* Mott, paper A.
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and all the conduction electrons can make transitions to the band. 
We suggest, then, that this is the reason why the destruction of the 
spontaneous magnetization increases the resistance.

We shall first discuss the dependence of the resistance on a and hence 
on H at low temperatures (above the Debye characteristic temperature 
but well below the Curie point). The probability of scattering is .pro
portional to the density of states (E) in the d band at the surface of 
the Fermi distribution (E =  £0). Making the reasonable assumption 
that Nd =  C \/E 0 — E (cf. § 5) near the head of the d band, it follows 
that Nd (Co) is proportional to the cube root of the number of positive 
holes in the band, and hence to

for electrons respectively parallel and antiparallel to the direction of 
magnetization. This for a =  the scattering probability into the d 
band is proportional to 2* T for one half of the electrons and zero for the 
other half, while for a =  0 the scattering probability is proportional to T 
for all the electrons.

The current, then, in the metal, is made up of two parts, contributed 
by electrons with the two spin directions. We may assume that during a 
free path an electron changes its spin direction more than once, so that 
the two currents are equal; it then follows that the resistance is proportional 
to the mean scattering probability, and hence to

R =  const. T

For (t/cto,, small, this gives

R =  const. T

(26)

(27)

The change of resistance in a magnetic field will thus be for small csjax

AR _  _  , A (a2)
R t 9 Soo2 '

Thus we expect that near the Curie point the constant b will have the 
value 0-11.

Actually b is not found to be constant near the Curie point*; Stoner, 
however, has pointedf out that below the Curie point A (a2) does not

* Englert, ‘ Z. Physik,’ vol. 74, p. 748 (1932). 
t  In the press.
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correspond to the true magnetization; the work of Potter {loc. cit.) 
shows that AR/RT is in fact proportional to the change in the internal 
energy determined from the magneto-caloric effect. Estimating from the 
latter effect the “ true ” change in A (a2), we find

b — 0-5 (experimental).

The agreement is perhaps as good as we can expect with so simple a model 
of a ferromagnetic near the Curie point.

The derivation of formulae (25) and (26) is actually valid only for low 
temperatures, because it neglects the fact discussed in § 4, that Nd (E) 
cannot be considered constant throughout the range kT  at the surface 
of the Fermi distribution. We shall not attempt to give a quantitative 
theory of the resistance temperature curve near and above the Curie 
point. It is, however, clear that the theoretical curve for constant will 
be similar to that for Pt and thus concave to the temperature axis. In 
fig. 3 we show by the dotted lines the sort of curves we should expect to 
obtain for a — a* and a — 0, the ordinates of the two curves being in 
the ratio 1: 22/3.

7—Alloys of N ickel

From the theoretical point of view, the resistance of an alloy is made 
up of two parts:—

R R0 +  Rt,

where R0 is the resistance due to disorder in the alloy, RT and to the 
thermal vibration of the atoms. In general R0 is independent of tempera
ture, while Rt increases linearly with T as for a pure metal. In paper A, 
however, it was shown from experimental evidence that in certain Pd-Ag 
alloys, at least part of R0 (and hence of the resistance at 0° K) is due to 
transitions from the s to the d band. This is probably the case for other 
paramagnetic or ferromagnetic alloys. It follows that R0 will also be a 
function of the temperature, that part of R0 which is due to s-d transitions 
being proportional to

( 1 - a , + ( 1 + £ / '  <28)

and hence increasing by a factor 2} =  1-59 between 0° K and the Curie 
temperature.

Fig. 4 shows measurements of the resistance of a series of Cu-Ni alloys 
due to Chevenard.* The sharp rise with T in the resistance of the alloy

* ‘ C.R. Acad. Sci. Paris,’ vol. 181, p. 29 (1925). Cf. also similar results by 
Krupkowski and de Haas, ‘ Comm. Phys. Lab. Leiden,’ No. 194a (1928).
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containing 20% copper below the Curie point, compared with the gradual 
rise above, suggests that R0 as well as RT depends on T below the Curie 
point, as suggested by formula (28).

For paramagnetic and ferromagnetic alloys above the Curie point, 
that part of R0 which is due to s-d transitions will be given by (cf. equation 
(23))

const. 1 TC
~6

T \2~
To

T <  T0. (29)

Thus if Rt is not too large, the resistance will decrease with temperature.

-2 0 0
T °C

Fig. 4—Resistance of copper-nickel alloys. The figures give the proportion o f
copper in atomic per cent.

We may thus understand why alloys with about the composition CuNi 
(constantan) have a maximum in the resistance near room temperature. 
In these alloys the d shell is nearly full up, so that T0 will have a value 
considerably less than 1000°-2000°, the values estimated for pure nickel. 
On the other hand, probably only a small part of R0 is due to s-d tran
sitions and thus dependent on temperature. The parts of the resistance, 
therefore, which depend on temperature will be a term of the type (29) 
with T0, say, 300°, and a term due to thermal vibrations of the same order 
of magnitude as the resistance of pure copper. Two such terms will 
account for the observed maximum.

Summary

The quantum theory of electrical conductivity developed by Bloch 
and others is extended to metals where the conduction electrons occupy 
more than one Brillouin zone, as is the case for all real metals except the



alkalis and noble metals. The theory is applied to the transition metals; 
certain anomalies in the resistance temperature curves of the para
magnetic metals Pd, Pt, Ta are explained. A theory is given to account 
for the fact that the resistance of nickel decreases in a magnetic field, and 
an expression for the decrease obtained, which is of the same order of 
magnitude as that observed. Finally, a qualitative discussion is given of 
the resistance temperature curves of copper-nickel alloys such as con- 
stantan.
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