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A DISCUSSION OF THE TRANSITION METALS ON 
THE BASIS OF QUANTUM MECHANICS 

BY N. F. MOTT, M.A. 

Received March 15, 1935. Read May 3 ,  1935. 

ABSTRACT. The magnetic susceptibilities and electrical conductivities of cobalt, nickel 
and palladium and of their alloys with copper, silver and gold are discussed on the basis 
of the quantum theory of metals. It is shown that the number of electrons in the outer- 
most s state must be about 0.6 per atom in the transition metals and one in the noble 
metals; certain magnetic properties of the alloys are explained on the basis of this fact. 
A quantum-mechanical explanation of the relatively high resistance of the transition 
metals is given and is shown to be supported by measurements of the resistance of alloys. 

§ I .  I N T R O D U C T I O N  

W I G N E R  A N D  SEITZ(') have recently shown that the quantum theory is 
capable of accounting quantitatively for the cohesive forces in a typical 
metal (sodium); the purpose of this paper is to give a qualitative dis- 

cussion, based on the same theory, of some properties of the transition metals and 
in particular of the elements nickel and palladium, which come immediately before 
copper and silver in the periodic table. After an introductory discussion of the 
electronic structure of these metals and a comparison between the binding forces 
of nickel and copper, we shall consider (i) the saturation moments of the ferro- 
magnetic metals and alloys, and the reason why they are not equal to integral 
numbers of Bohr magnetons per atom ($92 and 3); (ii) the paramagnetism of 
palladium and of its alloys with copper, silver and gold ($9 4 and 5 )  ; and (iii) the 
electrical conductivity of the transition elements, and the reason for their low con- 
ductivity as compared with that of the noble metals. The  resistance of alloys of the 
transition metals with copper, silver and gold is also discussed ($ 6) .  

T o  obtain an approximate solution of the Schrodinger equation for the electrons 
in a metal we may start from one or other of two models; we may picture the 
electrons as bound to individual atoms (method of Heitler and London and of 
Heisenberg) or we may think of them as belonging to the crystal as a whole (method 
of Bloch). It is to be emphasized that these two models do not correspond to 
different physical states of the crystal; both lead to wave functions of the whole 
system which are approximations to the true wave function. Insulators, as well as 
conductors can be treated, to a certain degree of approximation, by the use of either 
model, In  this paper we shall use that of Bloch not only for the outermost s 
electrons, which are responsible for the cohesion and for the conductivity, but also 
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Energy required to raise atom from the 
lowest state with the configuration 
((n- I) d}g (ns)' to that with {(n- I) d}I0 

for the d electrons in the incomplete shells, which are responsible for the ferro- 
magnetism of nickel and for the high paramagnetism of palladium. We do not, 
of course, consider that the Bloch approximation is the better of the two when the 
overlap between the wave functions of two atoms is as small as it is for, say, the 
3d states of nickel''); we use it because with this model one may include, in the 
zero order of approximation, the possibility that an atom may be ionized, or may 
contain a non-integral number of electrons." T o  take these possibilities into 
account in the Heisenberg model would be much more complicated. 

In  the Bloch approximation, each electron is described by a wave function $k, 
which is a solution of the Schrodinger equation 

h 

0.76 I 1 '4 -0.81 

V 
k 
Ek 

where V is the potential of a periodic field extending throughout the crystal. The 
subscript k denotes the state of the electron; owing to the exclusion principle, not 
more than two electrons may be in each state. The  allowed energies Ek lie in zones 
or bands ; if the atoms are a long way apart, the zones are extremely narrow, but 
as the atoms are brought nearer together the zones broaden out and may overlap. 
Each zone corresponds to a stationary state of a single electron in the field of the 
isolated atom ; t the number of states in any zone is always equal to the statistical 
weight of the atomic state to which it corresponds, multiplied by the number of 
.atoms NA in the crystal. For the transition elements we are interested in the bands 
which correspond to the ns and (n  - I) d states of the free atom, n being the principal 
quantum number of the outermost s electron, i.e. 4 for nickel and 5 for palladium. 
The  m band contains one state per atom and the (n - I)  d band five. Two electrons 
may be in each state. Since these elements have IO electrons which must be shared 
between the two bands, and since the ferromagnetism shows that in nickel at any 
rate the 3d band is not full, it is clear that the two bands must overlap. 

In  the elements nickel, palladium and platinum the states with the electron 
configurationsf ((n - I) d)10 and { ( E  - I) d)g (ns)l have energy differing by an amount 
considerably less than the binding energies of the crystals (approximately 4 electron- 
volts per atom). The energies are given in table I in electron volts. 

NA 
n 

Table I 

I I Nickel I Palladium i Platinum I 
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Thus the work required to take an electron from the s state to the d state is 

small and, in so far as it is legitimate to refer to the energy of a single electron, we 
may say that the energy of an electron in the (n-  I) d state is nearly the same as 
in the ns state. 

For our discussion of the transition metals the essential assumption is that the 
interaction energy between the d shells of neighbouring atoms is small. As has been 
pointed out by Slater(’) this is probable, because the overlap between the wave 
functions is small. The d band will therefore be narrow (less than I e-V.) and its 

,4s 

E,,,. E* 
Figure I. Density of electronic states N ( E )  as a function of the energy E for a transition metal 

(nickel) and noble metal (copper). The shaded areas represent occupied states. The total number 
of states, N (E) dE, is 5Na 111 a d band and NA in an s band, where NA is the total number of 
atoms. 

mean energy will not be displaced very much from the position of the d state in 
the free atom. The  s electrons will therefore be responsible for nearly all the cohesion. 
The number of electrons in the s band will not change with temperature, except 
by a small quantity of the order of magnitude kT/(binding energy per atom). 

We denote by(4) N ( E )  dE the number of states in a given band with energy 
between E and E + dE. Figure I shows the general form of N ( E )  plotted against E 
for two such metals as nickel and copper which, having nearly equal atomic volumes 
SO that they are adjacent in the periodic table, probably have similar internal fields. 
There are five times as many states in the d band as in the s band. I n  copper the 

N ,  E 
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3d band is full" with I O  electrons and the 4 band half full with one electron per atom. 
I n  nickel, with one electron fewer, there will be a certain number p of electrons per 
atom in the s band and an equal number p of positive holes in the d band.? If one 
assumes that the energies of the bands in copper and nickel are the same, it is clear 
from the figure that p is less than unity, i.e. that nickel will have fewer s electrons 
than copper. If copper is alloyed with nickel we should on the basis of this model 
expect that the number of s electrons will increase only very slightly with increasing 
copper content until the d band is full, when the ratio of the number of copper to 
that of nickel atoms will be p : ( I  -9). I n  the next sections, we shall refer to the 
abundant experimental evidence showing that this is so, and that analogous results 
hold for palladium alloyed with noble metals. 

f~ 

Figure 2. Energy E of the electrons in copper, as a functlon of the atomic radlus Y ,  calculated by the 
method of Wigner and Seitz. The unit of energy is the ionization potential of hydrogen; (I) the 
energy of the lowest s state; (11) the energy of the occupied state with maximum energy; 
(111) the mean energy of the electrons. 

The considerations of the next section show that for nickel the number p of 
electrons in the s band is about 0.6 per atom. In  order to gain a better under- 
standing of the energies involved, we have carried out a Wigner-Seitz calculation 
for the neighbouring element copper, using the atomic field calculated by Hartree. 
We have only made the calculation to the degree of approximation adopted in 
Wigner and Seitz's first paper, and have therefore made no allowance for the 
correlation between the positions of electrons either with parallel or with anti- 
parallel spin; and we have made no allowance for the effect on the 3d electrons of 
the alteration in charge-density of the 4s electron. The  Fermi energy was calculated 
by a method similar to that of Slater'6' and found to be about 1-4 times greater 
than the value given by the Sommerfeld formula. 

The results of this calculation are shown in figure 2. The curve (I) gives the 
energy of the electron in the lowest state, (11) that of the electron in the highest 

*i The considerations set forth in this paper show that if thls were not the case copper would 
have the low conductivity and large magnetic susceptibility charattenstic of a transitlon metal. 

j- Further evidence of the existence of unoccupied d states with large values of N ( E )  is afforded 
by the work of Veldkamp (5) on the fine structure of Ledges in the X-ray absorption spectra of Ta 
and W. 
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state, and (111) the mean energy-i.e. the energy of the lattice. The  abscissae Y are 
defined by 

+nr3 = the atomic volume. 
The calculation gives Y = 3.15 atomic units, as against an observed value r = 2-66, 

and a binding energy 0.14 Rydberg units, as against 0.25 observed. The  agreement 
with experiment is not good, but the calculations illustrate our point that the 
electrons with maximum energy have greater energy than in the free atom, so if 
the 3d shell had in it any vacant places of energy about the same as in the free 
atom (shown by the horizontal line), the electrons would be in a state of lower energy 
if they occupied those places. 

If these ideas are correct, we should expect the binding energies of nickel, 
palladium and platinum to be greater than those of copper, silver and gold. The  
values in table 2 are given by Grimm and Wolff(7). 

Table 2. Binding energies (kilocal./gm.-atom) 

! Nickel IO1 

Platinum 122 
Copper 76 
Gold 83 

Table 3 

Work function 
(e-V.) 

5.01 
4'38 
4.96 

Nickel 
Copper 
Palladium 
Silver 
Platinum 
Gold 

Ionization 
potentials (e-V.) 

7.2" 
7.68 
7'5" 

5 2. SATURATION MOMENTS O F  T H E  FERROMAGNETIC ELEMENTS 

It is a well known fact that the saturation moments of ferromagnetic elements 
do not correspond to integral numbers of Bohr magnetons eh/zmc per atom. 
The saturation moments for the three ferromagnetic elements@) are as shown in 
table 4. 

It is generally recognized that the ferromagnetism is due to 3d electrons. From 
the point of view of the Bloch theory there will exist in the solid a band of statest 

* The values given are the energies required to ionize an atom in the lowest state having the 

t Cf. figure I. 
configuration ((n - I) d}s m1. 
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Nickel 

Iron 
Cobalt 

corresponding to the 3d states of the atom, and another band corresponding to the 
4; in nickel the bands must certainly overlap, or the 3d shell would be full and the 
qs band empty, and the metal would be an insulator. There will thus be for each 
metal a certain numberp of electrons per atom in the s band, and IO -p ,  9 -p, 8 - p  
in the d band for nickel, cobalt and iron respectively. 

Bl~ch '~) ,  and more recently Wigner''") have discussed ferromagnetism starting 
from the model used here; they have shown that under certain conditions the 
exchange forces may be such that the state of lowest energy is reached when 
some of the electrons have their spins uncompensated, i.e. when more spins are 
parallel to a given direction than are antiparallel. 

Table 4 

0.6 
1'7- I = 0 7  
2'2 - 2 = 0.2% 

Element 
Saturation intensity 
per atom (units of 

ehlzmc) 

Iron 
Cobalt 
Nickel 

2'2 
1'7 
0.6 

Table 5 

Number of electrons 
per atom in 4s band 
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electrons (see below), the number which can make such a transition is of the order 
of magnitude KTIE, and is therefore negligible. 

We thus deduce that the saturation intensity is the maximum possible for the 
number of positive holes left in the 3d band. The number p of electrons in the 4s 
band is therefore as shown in table 5 for the three elements. 

We shall see in 5 4 that palladium like nickel and cobalt has also about 0.6 
electron per atom in the outer s band; the evidence for platinum is less definite. 

3 .  ALLOYS O F  N I C K E L  A N D  COBALT W I T H  OTHER METALS 
The theory given above accounts at once for the remarkable results of Alder("), 

who has found that in the copper-nickel alloys, which have a face-centred cubic 
structure over the whole range, the saturation moment at low temperatures is 
decreased by one Bohr magneton for each copper atom which replaces a nickel 
atom in the lattice. This rule has been verified up to 40 per cent of copper; by 
extrapolation the saturation intensity will reach zero for an alloy containing 60 per 
cent of copper, and 40 per cent of nickel. Sadron('*) has found, moreover, that in 
the alloys of nickel with zinc, aluminium and tin, the replacement of a nickel atom 
by an atom of one of the three elements mentioned decreases the moment by approxi- 
mately two, three and four Bohr magnetons respectively. 

On the model given above, this is to be explained as follows. I n  all these alloys 
the maximum binding energy will be obtained when the number of electrons 
in the 4s band is about 0.6 per atom, as for nickel. The  extra electrons will therefore 
go into the 3d band, as long as there is room for them there. Rut in the 3d band, 
at low temperatures all the states with spin parallel to the direction of magnetization 
are already occupied (hypothesis of § 2). Therefore the electrons must go into states 
having the opposite spin. Thus if a nickel atom is replaced by an atom of copper, 
zinc, aluminium or tin, the saturation intensity of magnetization will be decreased 
by one, two, three or four Bohr magnetons as the case may be. 

This explanation does not necessarily imply that the 3d shells of copper, 
zinc, etc., are to any extent ionized when alloyed with nickel. I n  zinc, for instance, 
the 3d levels are much lower than in nickel, and so the 3d band will split into two ; 
wave functions corresponding to energies in the lower band will be small except 
in the neighbourhood of zinc atoms. If the number of zinc atoms is NA x and of 
nickel atoms NA (I - x), the number of states in the lower and upper bands will 
be loNA x,  ION^ (I  -x) respectively. The  lower band will always be full, so that 
the mean magnetic moment in the neighbourhood of a zinc atom is zero. 

We have seen that cobalt and nickel have about the same number of +- electrons. 
Experiment* shows that the saturation intensity of cobalt-nickel alloys plotted 
against atomic composition gives a fairly straight line. This shows that the number 
of 4s electrons remains between 0.6 and 0.7 throughout the range, while the 
magnetic moment of the 3d shells remains as great as the number of positive holes 
allows. 

* Cf. reference (S), p. 532. 

x 
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X 

Sadron(") finds that the replacement of one nickel atom by an atom of man- 
ganese increases the magnetic moment by three Bohr magnetons, this finding being 
valid up to about 6 per cent of manganese. This is to be expected, because manganese 
has three less electrons than nickel, and, assuming always that the firmest binding 
(lowest energy) occurs with 0.6 electron in the qs band, the replacement of a nickel 
atom by one of manganese will decrease the number of electrons in the 3d band 
by three. If as many electrons in the 3d band as possible have their spins parallel 
to the field, Sadron's result follows. 

On the other hand, it is not easy to see why the addition of manganese to cobalt 
decreases the moment. 

The  addition of palladium to nickel leaves the saturation moment unchanged, 
up to about 50 per cent of palladium. This shows that in these alloys the number 
of electrons in the s band is also about 0.6, as for nickel. Similarly, the addition of 
palladium or platinum to cobalt gives a curve for the saturation moment very like 
that of cobalt-nickel ; the cobalt-palladium alloys have a saturation moment of 
0.5 Bohr magnetons per atom of both Kinds even for only 15 per cent of cobalt(13). 

4. PARAMAGNETISM O F  PALLADIUM AND P L A T I N U M  

The  transition metals palladium and platinum have paramagnetic susceptibilities 
which vary with temperature much less than a normal paramagnetic substance but 
are large compared with those of the other metals. This paramagnetism is certainly 
due to the uncompleted shells: definite evidence to this effect is given below. We 
consider it extremely improbable that orbital motion is responsible for any significant 
part of the susceptibility ; the gyromagnetic effect shows that in the ferromagnetics, 
even above the Curie the magnetism is at any rate mainly due to spin, and 
thus that the interaction between the spins is sufficient to quench the orbital motion, 
Now Slater(@ has pointed out that the overlap for the incomplete d shells is less for 
the ferromagnetic than for the similar non-ferromagnetic elements. We should there- 
fore expect, a fortiori, that the orbital motion would be quenched for the non- 
ferromagnetic elements. 

We shall therefore assume that the paramagnetism is a spin paramagnetism. 
Pauli('5' has given a theory of the paramagnetism of free electrons, which may be 
modified" to apply to the case when the electrons move in a periodic field. The 
formula for the susceptibility x is 

x = 2p2 N (Emax.) p = eh/zmc ......( I), 

N(&,.) where iV(Emax.) is the number of electronic states per unit energy range at the 
surface of the Fermi distribution-i.e. in the occupied state of highest energy. 
Since N ( E )  is very large for a narrow band, one can always obtain agreement with 
experiment by assuming the breadth of the band to be sufficiently small.+ 

We shall make an estimate of the breadth of the band for palladium, assuming 

* Cf. Sommerfeld and Bethe, reference (4), p. 473. + Cf., for instance, reference (16). 
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that the d shell is full except for 0.6 electron per atom. At the head of a band N ( E )  
will have the form" 

Eo being the energy of the highest state in the band. 
N ( E ) = A  (E,,-E)* ..... .(z), 

Now the number n of positive holes per unit volume is 

Hence, by equation (I) 

... .(3). 

With n equal to 0.6 (atomic volume) this gives for the energy interval between the 
surface of the Fermi distribution and the top of the d band 

Since we have at present no a priori knowledge of the breadth of the band, it is 
not impossible that it should be as narrow as this. On the other hand, the specific 
heat of the free electrons is given, according to the usual theory, by t  

Eo- Emax.  = 0.05 e-V. ..... .(4). 

T 
so that, if in palladium and platinum the large paramagnetism were entirely due 
t o  a large N (E) ,  there would be a considerable contribution to the specific heat 
from the d electrons, T h e  relation between the specific heat and the susceptibility 
would be 

7T2 J 
c,=- - k2T X 

3 P2 
...... (5 ) ,  

which gives for palladium (x= 64-10-~) and platinum (x= z8-10-~) the values 
0.009 T and 0.004 T ,  in calories per gram atom. Such large values are incompatible 
with the experimental observations, since they give, for palladium at room tem- 
peratures, a specific heat greater than R from the e1ectrons.f 

We therefore conclude that, for palladium and platinum, the density of states 
N ( E )  for the d band, though considerably greater than for free electrons, is not 
sufficient to give the observed paramagnetism, but that the latter is due to an 
exchange force of the same type as is responsible for ferromagnetism. We shall 
therefore assume 

where A is in general greater than unity, and depends in some unknown way on the 
distance apart of the atoms. 

x = z A p 2  N ( E m a x )  ...... (6), 

A 

5 5 .  P A R A M A G N E T I C  S U S C E P T I B I L I T Y  O F  A L L O Y S  O F  P A L L A D I U M  
W I T H  COPPER, S I L V E R  A N D  G O L D  A N D  O F  P A L L A D I U M  

S A T U R A T E D  W I T H  H Y D R O G E N  

Experiments have been carried out by Svensson(17) on themagnetic susceptibility 
of the copper-palladium and silver-palladium alloys, by Vogt('*) on gold-palladium, 

* Cf. Sommerfeld and Bethe, reference (4) p. 473. 
$ Note added in proof. Keesom and Clarkj32) have recently found for nickel below 4" K. a value 

for the specific heat of 0.0019 T, which suggests that E,-Emax. IS about 0.2 e-V. for this element. 

t Cf. reference (4), p. 430. 
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and by Aharoni and Simon(19) and by Svensson(20) on palladium saturated with 
hydrogen. If our interpretation of the paramagnetism is correct, the effect on the 
susceptibility of substituting an atom of a noble metal is twofold ; by altering the 
interatomic distance the exchange forces, and hence A in equation (6), may be 
changed; and by filling up the d band N (Emax.)  will be decreased. Since we are 
not in a position to calculate A, we shall discuss the change in N (Emax.). 

For any nearly full band of a pure metal, N (Emax.) is equal to the cube root* 
of the number of unoccupied ‘ ‘holes ” in the band considered (4d for palladium). 
If we assume the same’to be true for the alloy, this would give us, for an alloy 
consisting of Nx atoms of copper, silver or gold and N ( I  - x )  of palladium, 

where p is the number of positive holes per atom in pure palladium. On the other 
hand, as explained in 4 3 ,  if the d levels have different energies in the two atoms 

N (Emax. )  = const. x ( p  - x)* . . . . . .(7), 

Figure 3. The density of states at the surface of the Fermi distribution (I) from equation (7); 
(11) from equation (8). 

concerned, the d band will split into two, and only the upper band, corresponding 
to the 4d states of palladium, will have positive holes. In this case, the number of 
positive holes per palladium atom is 

and hence for N (Emax.) we should write 

N (Emax.) = const. x (1 - x )  (PL ...... (8), 
I - x  .)* 

N (Emax. )  according to equations (7), (8) is illustrated in figure 3 with p equal to 
0.6. 

This formula, moreover, is only accurate if the palladium atoms are arranged 
in a regular way in the crystal-i.e. if they form a superlattice, which is not in 
general the case. For a random distribution of the palladium atoms, we should 

* This is easily seen from equations (2)  and (3). 
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expect the upper limit of the band to be less sharp. I n  consequence, N (Emax.)  
will not disappear so suddenly with increasing x as equations (7) and (8) suggest." 

In  the case of hydrogen dissolved in palladium, it is probable that the hydrogen 
atoms give all their electrons to the 4d levels of palladium, since the proton does 
not replace a palladium ion in the lattice. Thus for Ny hydrogen atoms dissolved in 
N atoms of palladium, we shall have N 

x 
N (Emax,) = const. ( p  -y)* ...... (9). 

Figure 4 shows the observed susceptibility of palladium-silver plotted against x 
(where IOOX is the number of silver atoms per IOO atoms of both kinds), and of palla- 
dium-hydrogen against y (where IOOY is the number of hydrogen atoms per IOO 
palladium atoms). As the equations (8) and (9) lead us to expect, the susceptibility 

I 
0-5 I -0 

x ory- 0 

Figure 4. The full lines shows the susceptibility of palladium-silver, and the crosses the sus- 
ceptibility of palladium + hydrogen. x denotes the ratio of silver to atoms of both kmds ; y denotes 
ratio of hydrogen to palladium atoms. 

for palladium-hydrogen falls to zero more sharply. Neither curve follows at 'all 
exactly the theoretical curve; this may be ascribed to the variation of the exchange 
force, and to lack of sharpness of the edge of a band mentioned above. 

We deduce that in palladium the number of 5s electrons per atom is about 
o.5.T That the number (0.5) of s electrons in palladium is less than for nickel (0.6) 
is to be expected, because in atomic palladium the (4d)1° state is the lowest, whereas 
in nickel the (3d)lo state is 1.4 e-V. higher than the lowest state with the configuration 
(3d)9 (4s)l. Therefore in palladium more electrons will go into the d band. 

If the view given here of the absorption of hydrogen by palladium is correct, 
* Svensson (17) has found that for the copper-palladium alloys, where the susceptibility dis- 

appears at about 5 0  per cent of copper, the disappearance is sharper for annealed alloys in which the 
atomic arrangement is ordered than for quenched alloys, where the arrangement, as the electrical 
conductivity shows, is disordered. 

f The relation between the disappearance of paramagnetism of palladium for 50 per cent 
noble metal or hydrogen, and the disappearance of the ferromagnetism of nickel for about the 
Same amount of copper, was first pointed out in an interesting paper by Dorfmann (21). 

37 PHYS. SOC. XLVII, 4 
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the fact that palladium becomes saturated at the composition Pd,H is not to be 
attributed to the formation of a compound, as suggested by Linde and Borelius(z2) 
and others. It must be interpreted as meaning that a hydrogen atom can only 
enter the lattice if its electron goes into the d shells of the surrounding palladium 
atoms, so that when these d shells are full, no more hydrogen can be absorbed. The 
saturation at a composition near Pd,H follows from the fact that palladium has 
about 0.5 positive holes in the d shell. 

5 6. E L E C T R I C A L  C O N D U C T I V I T Y  

All the transition metals are comparatively poor conductors ; the conductivities 
of nickel, palladium and platinum are compared below with the conductivities of 
the elements that follow them in the periodic table, namely copper, silver and 
gold. 

Table 6. Conductivity U (cm? i2? x 10-4) at oo C. 

49'0 I I O S 2  I Nickel 16.1 Palladium Platinum 
Copper 1 64'5 I Silver I iz:; 1 Gold 

According to modern theories, a perfect lattice has infinite conductivity; but when 
the atoms are displaced from their mean positions owing to thermal motion, the 
electrons may be scattered and the metal has a finite resistance. 

In a recent paper(23) the author has compared the conductivities of the elements 
for equal mean displacement of the atoms from their positions of equilibrium; 
the results ( U / M @ ~ )  are shown in table 7 ,  0 being the characteristic temperature. 0 

Table 7 .  o/M@, (arbitrary units) 

Nickel Palladium 024 Platinum 0.105 

Copper ~ 1.32 ~ Gold 1 0'82 1 
I n  the paper quoted it was suggested that the scattering power of two ions, for 

given atomic displacement, would only differ by a few per cent for atoms near 
together in the periodic table, and having nearly equal atomic volume, such as for 
instance nickel and copper. I t  was therefore suggested that the difference between 
the conductivities of two neighbouring metals was due to the different effective" 
numbers of free electrons. Experimental results on the resistance of dilute solid 
solutions were quoted to show that this is the case for such metals as silver, cadmium, 
magnesium, etc., which have no incomplete shells. For nickel and palladium, 
however, we have found the actual number of electrons in the s band to be 0.6 
and 0.5 ,  and so the effective number of free electrons should not be less than half 
that for copper, silver and gold. The reason for the big difference in u/M02 must 
therefore be sought elsewhere. 

T h e  positive holes in the d band make a certain contribution to the conductivity 
-i.e. they are free to move through the lattice. But since the atomic d wave functions 

* Cf. Sommerfeld and Bethe, refwence (4), p. 378; or Mott(=3). 
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do not overlap much, the positive holes will take a much longer time to move from 
one atom to the next than would be taken by an s electron, and so the contribution 
to the effective number of free electrons is small. The positive holes, however, 
will increase the resistance in the following way. The  resistance of a metal is pro- 
portional, among other things, to the number of times per second an electron is 
scattered4.e. to the number of times per second that it makes a transition from a 
State specified by a wave vector k to any other state k'. Now the probability for 
such a transition is proportional? to N (Emax.), the density of states ; for if N (Emax.) 
is big, there are more states into which the electron can jump. I n  the transition 
metals, N (E) is big in the d band; and therefore electrons will jump more frequently 
from the s to the d band than from one s state to another. The time of relaxation for 
such metals is therefore shorter, and the conductivity smaller than for the noble 
metals, in which only s-s transitions can take place. 

In  order to convince ourselves of the truth of this hypothesis, we must show 
that the transition-probability from a given state in the s band to one in the d band 
is comparable with that between two states in the d band. The transition-probability 
between two states with wave functions $k, $kr is proportional to the square of a 
matrix element of the typef 

where V is the potential energy of an electron in the lattice. For &, the wave 
function of the final state of the electron, we may take, to a sufficient approximation, 
the wave function $hdnn-' in an unperturbed atom in the (n  - I)  d state. The perturbing 
energy, grad V ,  is the change in the potential due to moving an atom through unit 
distance from its position of equilibrium; the perturbing energy in the neigh- 
bourhood of any one atom will therefore be of the form 

Therefore if $k were an s function (i.e. spherically symmetrical) the transition- 
probability would be zero. For a wave function at the surface of the Fermi dis- 
tribution, however, & will be of the form(z3) given by 

where $$, &, $d are supposed normalized and have the symmetry of s, p ,  d wave 
functions with principal quantum number n and A >  B > C. The transition- 
probability between two states in the s band will be of the order of 

I ABS $sn grad Vt,hDn d7 1 2 ,  
and between two states, one in the s band and the other in the d band, 

I BJ grad V #pn d7 I 2. 

These two expressions contain the same power of the small coefficient B, and may 
be taken to be of the same order of magnitude. 

Evidence of the truth of the hypothesis that the high resistance of the transition 
metals is due to the large density of states, N (E) ,  in the d band can be derived from 

k, k' 

.f$k" ( r )  grad V $'k ( r )  d7, 
V, &. 

f ( r )  cos 8. 

&=A $sn + B $Dn + C $dn + . S .  ......( IO), 

-f Cf. reference (4), p. 519. $ Cf. reference (4), p. 512. 
37-2 
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the electric resistance of the gold-palladium and silver-palladium series of alloys. 
Both have the face-centred cubic structure throughout the range of composition, 
and do not form a superlattice. 

The  resistance of any disordered alloy is made up of two parts ; the resistance Ro 
due to disorder, and the resistance Rt due to thermal motion of the atoms. The 
latter may be taken to be given by 

Ro 
Rt 

dR R,= T - dT'  

I n  figure 5 we have multiplied the right-hand side by a constant differing slightly 
from unity, to obtain the correct resistance of the pure metal. 

40 

0 IO0 
Atoms of palladzum (per cent) 

Figure 5. Resistance of palladium-gold and palladium-silver alloys. The crosses denote the experi- 
mental values of Rt for palladium-gold; curve (I) is drawn through these points. Curves (11) 
and (111) show the total resistance of palladium-silver at zoo C. and -273' C. respectively. 

Since Rt may be as little as one-tenth of the total resistance, its accurate estima- 
tion is difficult. Figure 5 shows the values deduced from measurements of the 
resistance and temperature coefficient due to Giebe1(25), for palladium-gold. The 
behaviour of palladium-silver is similar." 

According to our hypothesis, if palladium is added to gold, the number p of 
s electrons will decrease to a limiting value of about 0.55 at 45 per cent of palladium. 
This should increase the resistance, but since the palladium ion has probably less 
scattering-power than that of the heavier gold, we may expect the thermal part Rt 
of the resistance to remain roughly constant up to this composition. For less than 
5 5  per cent of gold, however, the d band has vacant places in it, and we should 
expect Rt to increase, and the increase in the resistance to be proportional to 
N (Emax.). As figure 5 shows, the variation of N (Emax.) that one deduces from this 
curve is very similar to that given by the paramagnetic susceptibility of palladium- 

* Since the total resistance & + R, is greater for this alloy, the experimental values of R, are 
probably less certain. 
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silver, figure 4. Again, the disappearance of N (Emax,) at about 50 per cent of 
silver is not SO sharp as the theoretical equation (8) suggests. 

I n  figure 5 we show also the total resistance at room temperature of the silver- 
palladium alloys, and further the resistance at the absolute zero of temperature, 
obtained by subtracting the observed values of TdRJdT. The curves for gold- 
palladium and copper-palladium are similar, but the maximum occurs nearer to the 50 

per cent composition. For the copper-nickel alloys(26) the dependence on temperature 
is complicated by the fact that the alloys are ferromagnetic, and the change in the 
temperature coefficient in the neighbourhood of the Curie point, which for about 50 
per cent of copper is in the neighbourhood of room temperature. At low tempera- 
tures, however, the measurements of de Haas and Krupk~wski('~) show a curve very 
similar to that of figure 5 with the maximum at 45 per cent of copper. The sharp 
maximum of the resistance curves is in sharp contrast to the resistance of, say, 
silver-gold or palladium-platinum at low temperatures, which follow a curve of the 

R K X  (I-X) ...... (11), 
with a much flatter maximum; cf. figure 6 .  

admixture of I per cent of a transition metal and vice versa.* 
We give in table 8 the increase AR in the resistance of the noble metals due to 

Table 8. AR (pQ./cm?) 
Gold in palladium 1'0 Palladium in gold 
Silver in palladium 1-28 Palladium in silver 
Copper in palladium 
Copper in nickel 

Palladium in copper 
Nickel in copper 

As the author has pointed out in a previous paper(23), the scattering-power due 
to I per cent of a metal A in solid solution in B is the same as that due to I per cent 
of B in solid solution in A, and for pairs of metals of similar valency and structure 
(silver-gold or palladium-platinum), the increase of resistance AR is the same. If 
however atoms of a foreign metal can cause transitions from a state in the s band 
to the d band, we should expect AR to be much greater for, say, copper in nickel 
than for nickel in copper. This is not the case, and, even for the silver and gold 
alloys with palladium, the difference is only such as may well be accounted for by 
the fact that silver and gold have one s electron per atom in the s band and palladium 
only about 0.5. It is known from other evidence that the s electron of copper is 
rather less free than for silver and gold,? so that the effective number of free 
electrons per atom is rather less than unity. We deduce that the transition pro- 
babilities from s to d states in the metal are small, probably smaller than the 
s-s transition-probabilities. This is to be expected for the following reason: the 
possibility that in a transition metal an electron will make a transition from the s 

* The values are due to S~ensson(~7)  and Linde(z8), except for copper-nickel, where they are 
taken from (29). 

t From the measurements of the optical constants(27), and also from the fact that u/M@ is 
less for copper than for silver, in spite of the smaller ion of copper and the larger number of electrons 
Per unit volume. 
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band to a d state under the influence of an atom of copper, silver or gold in solid 
solution is proportional to 

IS*2--l (4 AV $k (4 d-r l2 ...... (12), 
where $dn-l and are defined above and AV is the change in the potential in the 
lattice due to the addition of an atom of copper, silver or gold. But this integral 
will only have a finite magnitude if the wave function $dn--l of the final d state of the 
electron is finite in the region where AV is different from zero ; i.e. in the immediate 
neighbourhood of the foreign atom. This will only be so if the d shell of the 
foreign atom is actually ionized, and we have seen in 0 3 that this is probably not 
the case. Thus, so far as the resistance due to impurities is concerned, nickel and 
palladium behave like copper or silver or gold. 

On the other hand, this argument cannot apply to alloys containing comparable 
amounts of the two metals, because here A V  must be taken to be the difference 
between the potential in the real lattice and the periodic potential which approaches 
most nearly to it'3'1, and so will be finite in the nickel or palladium atoms as well as 
those of the noble metal. Hence scattering of the electrons from s to d states will 
occur, so that the resistance rises more steeply than it otherwise would for increasing 
concentration of the noble metal. 

This is the probable reason for the surprising sharpness of the maximum of 
the curve (111) of figure 5 as compared with that for silver-gold, palladium-platinum, 

A quantitative theory may be given as follows. If V, (Y) is the potential energy 
of an electron in a palladium atom, and V,  (Y) in an atom of copper, silver or gold, 
and if x is the concentration of the noble metal, then, according to Nordheim, the 
periodic potential which approaches most nearly to the true potential is 

. etc. 

V=(I-x)  V,+x v,. 
The difference between this and the potential in a palladium atom is 

V -  VA = x AV, AV= V B  - V,, 

and since there are I - x of them, the probability of being scattered by a palladium 
atom is proportional to 

Similarly, the probability of being scattered by a silver atom is proportional to 

(I -x) x2 I J$p AV4kd-r 1'. 

x (I - x ) ~  I J$p AV$kdr 1'. 
If now the d shells are full, we have simply to add these two terms, whence we see 
that the resistance is 

p {(I -x) x2+x (I -xy}=px (I -3) ...... (13), 
where /3 is a constant, which is Nordheim's result. 

If, on the other hand, the palladium atoms have incomplete d shells, the pro- 
bability of scattering by a palladium atom is greater than by a silver atom. Assuming 
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in rough agreement with the experimental results shown in figures 4 and 5 ,  that 
for the d band N (Emax.) is proportional to 

and zero otherwise, we see that the resistance due to transitions of the electrons 
into the d shells is c( ( p - q  2 2  (I  -2) 

where a is another constant. 
In  figure 6 we show the two terms which contribute to the resistance; curve (11) 

is calculated from equation (14); curve (I) has the general form of equation (13), 
but we have shifted the maximum slightly to the right to take account of the .fact 
that palladium has fewer electrons than silver. It is seen that with suitable choice 
of the ratio cc : p, the general form of the experimental curve of figure 5 can be 
reproduced, curve (111). 

( P - x > z  X < P ,  

...... (14), 

0 
Atoms of palladium (per cent) 

Figure 6. Theoretical curve for the resistance, at oo K. of silver-palladium alloys: (I) due to s-s 
transitions; (11) due to s - d  transitions; (111) total; (I) plus an arbitrary multiple of (11). 

The  constants cc and ,f3 cannot be calculated without a detailed knowledge of 
the wave functions. 

The  experimental resistance curves show, however, that the effect of the d shells 
cannot increase the resistance by a factor of more than about two, as against a 
factor of five to ten for thermal agitation; this may be explained by the fact that AV 
is spherically symmetrical in the neighbourhood of any atom, and so formula (12) 
may be written in the following form, which should be comparedwith equation (IO): 

I CJ#dA-l AV #dn d7 I 
whereas the transition probability from one s state to another is 

Since C < A  we may assume the quantity (IS) to be small compared with (16). 

......( IS), 

I AZJ&" dT l 2  ...... (16). 
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