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Starting from thé energy and degeneracy of the Landau levels of a free-electron gas in
a magnetic field, the nonoscillatory term of the Landau diamagnetism is derived for

T =0, using elementary algebra only.

I. INTRODUCTION

The Pauli spin paramagnetism of conduction electrons
is a subject which is treated in most courses on magnetism,
metal physics, and solid state physics. Its logical counter-
part, the Landau orbital diamagnetism, however, is a far
less common topic in elementary texts. This is because the
mathematics, even in the free-electron theory, is difficult
and obscures the physics of the problem for many students.
Most authors therefore illustrate the derivation with
qualitative arguments that make the diamagnetism plau-
sible, once the energy of the Landau levels and their de-
generacy have been computed.

Using elementary algebra only, these arguments can be
made quantitative in such a way as to yield the correct value
of the nonoscillatory part of the susceptibility in the free-
electron approximation at zero temperature. Depending on
the level of the course, such a simple derivation can be a
valuable substitute for a more complete treatment of the
problem.

Il. LANDAU LEVELS

We consider the conduction electrons to be contained
in a rectangular parallelepiped with sides L,,L,,L, and
volume V. By applying periodic boundary conditions, the
wave vector components are quantized:

kj=2mnj/L; j=xy,:z, (1)

and the allowed states are represented by the poirnts of an
orthorhombic lattice in k space. When a magnetic field B
along z is applied to the free-electron gas, the points in a
plane perpendicular to the &, axis in this lattice will coalesce
into the Landau levels, which are represented by concentric
circles in these planes. The energy of the free electrons is
now given by

E = (n+ h)hw + h2k}/2m,

with w = gB/m (q is the absolute value of the electron
charge and B is the magnetic field). As shown in many
textbooks on solid state physics, the degeneracy of the
Landau levels is

p=mwl.L,/Th,

taking spin degeneracy into account.

In zero field the density of states in a plane perpendicular
to the k, axis is easily seen to be mL,L,/7h?, independent
of E. The number of states in an energy range Aw is

mwLyL,/Th = p.

The overall density of states is thus not affected by the
magnetic field. This allows us to associate a bunch of p
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nonmagnetic levels with each p-fold degenerate Landau
level. Each bunch of B = 0 levels is to be chosen in such a
way that the mean energy of thesé levels is equal to the
energy E; of the corresponding Landau level. Since the
density of states in the plane is independent of the energy,
this is simply done by considering a bunch which extends
from E; — hw/2 to E; + hw/2. As the first Landau level
has an energy Aw/2, we can start with a whole bunch at the
low side of the energy scale.

IIl. CALCULATION OF THE ENERGY FOR
B=0

Since the mean energy of a bunch of B = 0 levels coin-
cides with the B # 0 Landau level, and since the Landau
level can contain the same number of electrons as the bunch,
the energy of a completely filled bunch will not be affected
by applying the field. Therefore one must only consider
these bunches of levels which are intersected by the Fermi
surface. Because we make a ground-state calculation, we
assume for these top bunches that the part below the Fermi
level is completely filled, and that the part above it is com-
pletely empty. _

The component ki, perpendicular to the field, of a wave
vector of a point on the Fermi sphere in the ith plane obeys

(Fig. 1)
k= (kinar)? + (k)2
or
Ep = Emax (k%) + h2(k})?/2m (2)

in which A%(k%)2/2m is the energy due to the motion along
the field and E,,4x (k%) is the maximum energy due to the
motion perpendicular to the field for a particular value of
k.

Let E; be the Landau level corresponding with the par-
tially occupied bunch for k! (Fig. 2). Since the density of
states in each plane is indépendent of the energy, the mean
energy (due to the motion perpendicular to the field) of the
electrons in the top bunch is the arithmetic mean of the
maximum energy Emax and the bottom energy E; — hw/2,
ie.,

(1/2)(Emax +E; — hw/2)

For the same reason the occupation of a partially filled
bunch is equal to the occupation p of a completely filled
bunch times the relative energy range over which the oc-
cupied part of the bunch extends, i.e.,

PlEmax — (E; — hw/2)]hw.
With x; = Emax — E;, the energy (due to the motion per-
pendicular to the field) of the electrons in one partially
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occupied bunch is

(p/2)[Emax = heo/4 + x;(2E max/hw = 1) = x}/hw).
(3)

We shall assume that the values of x; are randomly dis-

tributed in the range between —hw/2 and Aw/2. This will

be a good approximation if the number of Landau levels

below E max 18 large and if E ., varies rapidly with k..
Averaging over all the planes, we have

(x;) =0, (4a)
w/2
(x2) =$f_’; //zx?-dx=h2w2/12. (4b)

From (x;) = 0 it follows that the mean occupation of the
top bunches is p/2, so that the mean energy of its electrons
due to their motion along the field is given by

(p/2)[X(K)Y/2m). (5)

The mean value of the total energy of the electrons in a top
bunch is the sum of (3) and (5). With (2) and (4) this value
can be written as

(p/2)(EF — hw/3).

From (1) it follows that the number of k% values is krL,/m.
The resulting total energy of the top bunches is therefore

U(B = 0) = (kpL:/7)(p/2)(EF — hw/3).

IV. CALCULATION OF THE ENERGY FOR B = 0

If the k. value of the electrons would be unchanged
when the magnetic field is switched on, the energy of all the
electrons of a top bunch would become E;, the energy of the
corresponding Landau level. Since the mean energy E; of
the whole bunch is larger than the mean energy of the oc-
cupied part of the bunch in zero field, the energy is seen to
increase with the field. The value of the magnetic suscep-
tibility computed from this energy increase is twice the true
value. This is because the configuration with unchanged k,
is not the ground state. Indeed, since x; is supposed to be
randomly distributed between Aw/2 and hw/2, there will
be as many partially occupied Landau levels above the
Fermi surface as below. For the same reason the number
of electrons on partially occupied Landau levels outside the
Fermi sphere is equal to the number of vacant states on the
uncompletely occupied Landau levels below the Fermi
surface. If the electrons are allowed to be redistributed
among the different k%, all the levels with E; > E ., can
be emptied and all the levels with E; < E,,x completely (p)
occupied.! Again because of the random distribution of x;,
the overall momentum and energy due to the motion in the
z direction will be unchanged.

Va2mE; /h .
: : . kmax 4
Fig. 1. lllustration of the relation
between kp,k, and ki,. Landau
levels are indicated by dots. ké
kg
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Fig. 2. Energy due to the motion perpendicular to the field. Two possible
positions of the top bunch with respect to Emax are shown.

Emox

The energy for B > 0 of the electrons in the Landau
levels E; is now simply pE; = p(E max — x;) for x; > 0 and
zero for x; < 0. The mean value of x; for x; > 0 is Aw/4.
Because we assumed an equal number of x; > 0 and x;
< 0, the average energy due to the motion perpendicular
to the field is now

(P/2)(Emax — hw/4).

The resulting total energy of the electrons in the Landau
levels E; is

U(B # 0) = (krL./7)(p/2)(EF — hw/4).

V. LANDAU DIAMAGNETISM
The energy increase due to the field is
AU=U(B # 0) — U(B=0)
= (pkrL,/27)(hw/3 — Aw/4)
= pkrL.hw/24T.

Substituting the expression for p and w, and putting L,L,L,
=V, we have

AU = Vkrq?B?/2472m.

The susceptibility is defined as x = —(uo/V)(02F/2B2).
Since dF/dB = d(AU)/OB, one gets for the suscepti-
bility

X = —nokrq¥/1272m.

This is the result derived by Landau.?

We must come back to the assumption concerning the
random distribution of x;. The number of Landau levels
below the Fermi surface is large for the majority of k% val-
ues if Aw < Ep. This condition is very well fulfilled for all
man-made magnetic fields and for ordinary metals.

The condition that E .« varies strongly with k, is not
fulfilled for small |k, |, i.., near the equator of our spherical
Fermi surface. For kT << hw, and thus certainly for the T
= () case which we consider here, there will be a term in the
energy which varies periodically with B. This term gives rise
to the de Haas-van Alphen effect and other oscillatory
phenomena. Another derivation of the Landau result has
been given by Pippard.3 This author considers the periodic
susceptibility due to the electrons in the top bunches for all
k., and not only for small | k,|. The Landau susceptibility
is then obtained as the mean value over one period of os-
cillation. So far this author’s treatment is of comparable
mathematical simplicity. In order to show that the oscilla-
tory part of the susceptibility comes from the electrons with
small | k.| and that the field independent Landau suscep-
tibility comes mainly from the electrons for which | k.| is
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not very small, Pippard refers to some more involved
mathematics. The latter can be avoided in the present
treatment.

VI. CONCLUSION

We have derived the Landau value of the orbital mag-
netic susceptibility of conduction electrons in the free
electron approximation at T = 0. We think that the re-
strictions of thiscalculation are compensated, for pedago-
gical purposes, by the simplicity of the mathematics used
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and consequently, by the possibility of a better under-
standing of the physics of the problem.

1Among the few books in which this redistribution is emphasized, we
mention F. Seitz, The Modern Theory of Solids (McGraw-Hill, New
York, 1940), p. 587.

2L, Landau, Z. Phys. 64, 629 (1930).

3A. B. Pippard, in Low Temperature Physics, 1961 Session of the Les
Houches Summer School, edited by C. De Witt, B. Dreyfus, and P. G.
de Gennes (Gordon and Breach, New York, 1962), p. 14-23.

4A. B. Pippard, Rep. Prog. Phys. 23, 206-210 (1960).
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