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C. FERMI-DIRAC DISTRIBUTION

Complete derivations of the Fermi-Dirac distribution are found in elementary text-
books on statistical mechanics.! We derive the distribution here by a device due to
F. Bloch. We consider the inelastic collisions of a conduction electron with a “two-level”
impurity atom with which the electron may be imagined to interact. The electron state
is labeled by its wavevector k. The impurity atom has two energy states 0 and A, as in-
dicated in Fi ig. C.1; the occupation probabilities of the two levels will be written as p(0)
and p(A). We examine those inelastic collisions which connect the electron state k
at electron energy e with the electron state k’ at electron energy € + A.

k'(e+A)
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Figure C.1 An electron in a state k of energy ¢ collides inelastically with an impurity atom initially
in an excited state of energy A. In the final state shown the electron is in a state k' with energy
€ + A. In such collisions the atom loses energy A.

The transition rate for a collision in which the electron starts at k and ends at
k' will be proportional to

fEOpA)[1 — fle + A)], ~

where ‘& is the probability that the initial state at k is occugled p(4) is the probability
the impurity atom is in the state A so that it can give up. its energy A to the electron,
and 1 — f(e + A) is the probability that the electron state k’ at € + A is vacant so that
it can receive the scattered electron. The final state k' must be vacant if the scattering
event is to take place; this is the special feature introduced by the Pauli principle,

The transition rate for the reverse collision k" — k is proportional to

fle + MpO)[1 = f(O)],

just reversmg the steps in Fxg C.land in the precedmg argument

* fOP(A) [1 —f(e + A)] = fle+ B)p(0) [1 — f(O)], (1)
where the anrages are undersqud ,to. be for ther'nial equilibrium at a common tempera-
1C. Kittel, Elementary statistical physics, Wiley, 1958.

2 The constants of proportionality in the rates of the direct and the inverse processes are exactly
equal by the principle of detailed balance, which follows directly from quantum theory.
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ture T. The Boltzmann distribution applies to the population of the states of the impurity
atom, so that

% = exp (—A/kgT). _ @
Thus (1) becomes
FLEED 1S _ o asa. )

L—fle+d) £l

This equation is easily seen to have a solution for all T if

1 _—“f(f) — e(s—n)/kBT, (4)

fle)

where p is a constant independent of e. From (4) we have the Fermi-Dirac distribution
law :

1
O = s (5)

The quantity p is the chemiéal potential, as discussed in Chapter 7.

D. TIGHT .BINDING APPROXIMATION FOR ELECTRONS IN METALS

,it is- useful to look at the formation of allowed and forbidden electron bands in
another way. We start vfr(_)m the energy levels of the neutral separated atoms and watch
the changes in the levels as the charge distributions of adjacent atoms overlap when the
atoms are brought together to form the metal. We can understand the origin of the split-

" ting of free atom energy levels into bands as the atoms are brought together by consider-

ing two hydrogen atoms, each with its electron in the 1s (ground) state. In Fig. D.1 the
wavefunctions ¥4, ¥z on the separated atoms are shown in (a). As the atoms are brought
closer together and their wavefunctions overlap, we are led to consider the two combi-
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Figure D.1 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c) Excited state wavefunction.
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