
In a theory which has given results like these, 
there must certainly be a great deal of truth. 

H .  A. Lorentz 

We can understand many physical properties of metals, and not only of the 
simple metals, in terms of the free electron model. According to this rnodel, die 
valence electrons of the constituent atoms becorne coriduction electrons and 
move about freely through the volurrie of the metal. Even in metals for which 
the free electron model works best, the charge distribution of thc conduction 
electrons reflects the strong electrostatic potential of the ion cores. The utility 
of the free electron model is greatest for properties that depend essentially on 
the kinetic properties of the conduction electrons. The interaction of the 
conduction clcctrons with the ions of the lattice is treated in the next chapter. 

Thc simplest metals are the alkali metals-lithium, sodium, potassium, 
cesium, and rubidium. In a free atom of sodium tlie valence electron is in a 
3s state; in the metal this electror~ becomes a conduction electron in the 3s 
conduction band. 

A r~ionovalent crystal which contains N atoms will have N conduction 
electrons and N positive ion cores. Thc Nat ion core contains 10 electrons that 
occupy the Is, 29, and 2p shells of the free ion, with a spatial distribution that 
is csscntially the same when in the metal as in the free ion. The ion cores fill 
only about 15 percent of the volume of a sodiurri crystal, as in Fig. 1. The 
radius of the free Na+ ion is 0.98 A, whereas one-half of the nearest-neighbor 
distance of the rr~etal is 1.83 A. 

The interpretation of metallic properties in terms of the motion of free 
electrons was developed long before the invention of quantum mechanics. The 
classical theory had several conspicuous successes, notably the derivation of tlie 
form of Ohm's law and the relation between the electrical and thermal conduc- 
tivity. The classical theory fails to explain the heat capacity and the magnetic 
susceptibility of the conduction electrons. (These are not failures of the free 
electron model, but failures of the classical Maxwell distribution function.) 

There is a further difficulty with the classical model. From many types of 
experiments it is clear that a conduction electron in a metal can move freely in 
a straight path over many atomic distances, undeflected by collisions with 
other cond~~ction electrons or by collisions with the atom cores. In a very pure 
specimen at low temperatures, the mean free path rnay be as long as 10' inter- 
atomic spacings (rnore tivan 1 cm). 

Why is condensed matter so transparent to conduction electrons? The 
' 

answer to the question contains two parts: (a) A conduction electron is not 



deflected by ion cores arranged on a periodic lattice because mattcr waves can 
propagate freely in a periodic structure, as a consequencc of the mathematics 
treated in thc following chapter. (b) A conduction elrctron is scattered only in- 
frequently hy other conductio~i electrons. This property is a consequence of 
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a 
gas of free electroris subject to thc Pa111i principle. 

ENERGY LEVELS IN ONE DIMENSION 

Consider a free electron gas in one dimension, t ak i~~g  account of quantum 
theory and of the Pauli principle. An electron of maqs m is confined to a length L 
by infinite harriers (Fig. 2). The wavefunction $,(x) of the electron is a solu- 
tion of the Schrodinger equation X+ = E+; with the neglect of potential cnergy 
we have X = p2/2m, where p is the momentum. In quantum theory p may be 
represented by the operator -i?i dldx, so that 

where t, is the e n c r a  of the electron in the orbital. 
We use thc term orbital to denote a solution of the wave equation for a 

system of only one electron. The term allows us to distinguish between an 
exact quantum state of the wave equation of a system of N interacting elec- 
trons and an approxirrlate quantum state which we construct by assigning the 
N electrons to N different orbitals, where each orbital is a solution of a wave 
equation for one electron. The orbital model is exact only if there are no inter- 
actions between electrons. 

The boundary conditions are cL,(O) = 0; $,,(L) = 0, as imposed by the infi- 
riite potential energy barriers. They are satisfied if the wavefunction is sir~elike 
with an integral number n of half-wavelengths between 0 and L: 

where A is a constant. \Ve see that (2) is a solution of (1), because 

whence the energy E, is given by 

We want to accommodate N electrons on the linc. According to the Pauli 
exclusion principle, no two electrons can have all their quantum numbers 
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x- (h'/~m)(n/21,)~. 

identical. That is, each orbital can be occupied by at most one electron. This 
applies to electrons in atoms, molecules, or solids. 

In a linear solid the quantum numbers of a conduction electron orbital are 
n and m,, where n is any positive integer and the magnetic qnanti~m number 
m, = +:, according to spin orientation. A pair of orbitals labeled by the quan- 
tum number n can accomlnodate two electrons, one with spin up and one with 
spin down. 

If there are six electrons, then in the ground state of the system the filled 
orbitals are thosc given in the table: 

Electroll glectron 
n nccupancy n o~rupancy 

More than one orbital may have the same energy. The number of orbitals with 
the saIrle energy is called the degeneracy. 

Let nF denote thc topmost filled energy level, where we start filling the 
levels from the bottom (n = 1) and continue filling higher levels with elec- 
trons until all N electrons are accommodated. It is convenient to suppose that 
N is an even number. The condition enF = N determines nF, the value of n for 
the uppermost filled level. 

The Fermi energy eF is defined as the energy of the topmost filled level 
in the ground state of the N electron system. By (3) with n = n, we have in one 
dimension: 



EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION 

The ground state is the state of the N electron system at absolute zero. 
What happens as the temperature is increased? This is a standard problem in 
elementary statistical mechanics, and thc sohition is given by the Fermi-Dirac 
distribution function (Appendix D and TP, Chapter 7). 

The kinetic cncrgy of the electron gas increases as the temperature is in- 
creased: some energy levels are occupied which were vacant at absolute zero, 
and some levels are vacant which were occupied at absolute zero (Fig. 3). Thc 
Fermi-Dirac distribution gives the probability that an orbital at energy E 

will be occupied in art ideal electron gas in thermal cq~iilihrium: 

The quantity p is a function of the temperature; p is to be chosen for the 
particular problcm in siich a way that the total number of in the system 
comcs out correctly-that is, equal to N .  At absolute zero = E ~ ,  because in the 
limit T + 0 the functionf(e) changes discontinuously from the value 1 (filled) to 
the value 0 (empty) at = cF = p. At all iemperatures f j ~ )  is equal to when 
E = p, for then the denominator of ( 5 )  has the valuc 2. 

6/kB, in units of 1@ K 

Figure 3 Femi-Dirac distrihutiorr function (5) at the valious labelled temperah~res, for 
T, - cl /kB = 50,000 K. The results apply to a gas in three di~ne~lsions. The total number of parti- 
cles is constant, independent of temperature. The chemical potential p at each te~nperaturc may 
be read off the graph as the energy at whichj = 0.5. 
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The quantity y is the chemical potential (TP, Chapter 5), and we see 
that at absolute zero the chemical potential is eqml to the Fermi energy, de- 
fined as the energy of the topmost filled orbital at absolute zero. 

The high energy tail of the distrihi~tion is that part for which 6 - y 9 k,T; 
here the exponential term is dominant in the denominator of (5 ) ,  so 
that f (e)  - exp[(p - <)/k,T].  This l im~t  is called the Boltzmann or  Maxwell 
distribution. 

FREE ELECTRON GAS IN THREE DIMENSIONS 

The free-particle Schrodinger equation in three dimensions is 

If the electrons are confined to a cube of edge J,, the wavefunction is the 
standing wave 

$,,(r) = A  sin ( m n ~ / L )  sin (m,y/L)  sin (m,z /L)  , ( 7 )  

where n,, f ly ,  11, are positive integers. The origin is at one corner of the cubc. 
It is convenient to  introduce wavefiinctions that satisfy periodic boundary 

conditions, as we did for phonons in Chapter 5. We now require the wavefunc- 
tions to be periodic in 1, y, z with period L. Thus 

and si~liilarly for thc y and z coordinates. Wavefunctions satisfying the free- 
particle Schrodinger equation and the periodicity condition are of the form of 
a traveling plane wave: 

$k(r) = exp (ik . r) r 
provided that the components of the wavevector k satisfy 

and similarly fork,, and k,. 
Any component of k of the form 2 n d L  will satisfy thc periodicity 

coridition over a Icngth L,  where n is a positive or negativr integer. The com- 
ponents of k are the quantum nurnhers of the prohlem, along with the 
quantum number m, for the spin direction. We confirm that these values of k, 
satisfy (8), for 



On substituting (9) in (6) we have the energy ek of the orbital with 
wavevector k: 

The magnitude k of the wavevector is related to the wavelength h by k = 2?rlh. 
The linear momentum p may be represented in quantum mechanics by 

the operator p = -ifiV, whence for the orbital (9) 

so that the plane wave $k is an eigenfunction of the linear momentum with the 
eigenvalue fik. The particle velocity in the orbital k is given by v = fiklm. 

In the ground state of a system of N free electrons, the occupied orbitals 
may be represented as points inside a sphere in k space. The energy at the sur- 
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface 
have a magnitude k, such that (Fig. 4): 

From (10) we see that there is one allowed wavevector-that is, one dis- 
tinct triplet of quantum numbers k,, k,,, k,-for the volume element ( 2 7 r / ~ ) ~  of 
k space. Thus in the sphere of volume 4?rk23 the total number of orbitals is 

where the factor 2 on the left comes from the two allowed values of the spin 
quantum number for each allowed value of k. Then (15) gives 

which depends only on the particle concentration. 

Figure 4 In the ground state of a system of N free 
electrons the occupied orbitals of the system fill a 
sphere of radius k ,  where EF = fL2k,22m is the energy of 
an electron having a wavevector k,. 



Table 1 Calculated free electron Fermi surface parameters for metals at room temperature 

(Except for Na, K, Rh, Cs at 5 K and Li at 78 K) 

Fermi 
Elcciron Radius'" Fermi Fermi F e r ~ n i  terriperature 

concentration, parameter \vdvevectur, vc1ocit)i energy, & - ~ ~ / k *  
V;llmw Metal in C I I I - ~  r. in cm-' in cm sC1 in eV in dee K 

- -- 

"The d~mens~onless radlus parameter IS defined as r,, = ~,la,, where a" is the first Bohr radlus and r, IS the radlus of a ~ p h e r r  that contrlns one electron 



Energy, + 

Using (14) and (l6), 

Figure 5 Density of single-particle states as a func- 
tion of energy, for a free electron gas in three dimen- 
sions. The dashed curve represents the density 
f ( E ,  T )D(E)  of filled orbitals at a finite temperature, 
but such that k,T is small in comparison with E,. The 
shaded area represents the filled orbitals at absolute 
zero. The average energy is increased when the tem- 
perature is increased from 0 to T, for electrons are 
thermally excited from region 1 to region 2. 

This relates the Fermi energy to the electron concentration NN. The electron 
velocity vF at the Fermi surface is 

Calculated values of k,, v,, and E, are given in Table 1 for selected metals; also 
given are values of the quantity TF which is defined as ~ , / k , .  (The quantity TF 
has nothing to do with the temperature of the electron gas!) 

We now find an expression for the number of orbitals per unit energy 
range, D(E), called the density of states.' We use (17) to obtain the total 
number of orbitals of energy SE:  

so that the density of states (Fig. 5) is 

'Strictly, D ( E )  is the density of one-particle states, or density of orbitals. 
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This result may he expressed more simply by comparing (19) and (20) to ohtain 
at E 

Within a factor of the ordcr of unity, the number of orbitals per unit energy 
range at the Fermi energy is the total number of conduction electrons divided 
by the Fermi energy, just as we would expect. 

HEAT CAPACITY OF THE ELECTRON GAS 

The question that caused the greatest difficulty in the early development 
of the electron theory of metals concerns the heat capacity of the conduction 

: electrons. Classical statistical mechanics predicts that a free particle should 

: have a heat capacity of k,, where k, is the Boltzrnann constant. If N atoms 
i each give one valence electron to the electron gas, and the electrons arc freely 
i mobile, then the electronic contribution to the heat capacity shonld be ;h'k,, 
i just as for the atoms of a monatomic gas. But the observed electronic contribu- 

tion at room temperature is usually less than 0.01 of this value. 

i This important discrepancy distracted the early workers, such as Lorentz: 

[ How can the electrons participate in electrical conduction processes as if they ' were mobile, while not contributing to the heat capacity? The question was / answcrcd only upon the discovery of the Pauli exclusion principle and the 
Fermi distribution function. Fermi found the correct result and he wrote, 
"One recognizes that the specific heat vanishes at absolute zero and that at low 
temperatures it is proportional to the absolute temperatnre." 

When we heat the specimen from absohite zero, not every electron gains 
1 an energy -kBT as expectcd clawically, but only those electrons in orbitals 
/ within an energy range k,T of the Fermi level are excited thermally, as in 
! 
i Fig. 5. This gives an immediate qualitative solution to the problem of the heat 
I 

capacity of the conduction electron gas. If N is the total number of electrons, ! 
i only a fraction of the order of TITF can he excited thermally at temperature T, 

[ because only these lie within an energy rangc of the order of kBT of the top of 
I the energy distribution. 

Each of these NT/Tr clcctrons ha5 a thermal energy of the order of kBT. 
The total electronic thermal kinetic energy U is of the order of 

The electronic heat capacity is given by 

and is directly proportional to T, in agreement with the experimental 
results discussed in the following section. At room temperature CeI is smaller 


