7.2.3 Experimental techniques

The expressions that we have derived for the Pauli paramagnetism of metals
agree moderately well with experiment, but can be improved by correcting for
the effect of electron-electron interactions. The spin susceptibility of a metal
can be extracted from NMR measurements which are much more sensitive to
the field due to the spin magnetic moment of the conduction electrons than to
the fields which arise from the electron’s orbital motion (which give rise to the
diamagnetic effects considered in Section 7.6).

The effect of the contact interaction between the conduction electron spin

and the nuclear spin leads to a small shift Aw, known as a Knight shift,

in the nuclear resonance frequency w. It can be understood by imagining
that individual conduction electrons hop on and off a given nucleus; the net
hyperfine coupling which the nucleus experiences is the result of averaging
over all the electron spin orientations. This net hyperfine coupling will be
zero without an applied field because the average of the electronic spin
orientations will vanish; the net hyperfine coupling will be non-zero in a non-
zero static field because this will polarize the electron spins. The Knight shift,
K = Aw/w, is therefore proportional to the conduction electron density at the
nucleus (which expresses the dependence on the coupling strength) and also
to the Pauli spin susceptibility (which expresses the extent to which an applied
field polarizes the electrons).

The static average of the hyperfine interactions causes the Knight shift.
Fluctuations about this average provide a mechanism for T} relaxation (known
as Korringa relaxation). The dominant T processes are flip-flop transitions
of the electron and nuclear (or muon) spins, in which the difference in electron
and nuclear Zeeman energies is taken up by a change in kinetic energy of
the conduction electron. The exchange in energy between the nucleus and
the conduction electrons is very small, so only electrons within kg T of the
Fermi surface are able to participate since only these have empty states nearby
into which they can make a transition. Thus for simple metals the spin-lattice
relaxation rate Tl"1 is proportional to temperature. The Knight shift, usually
expressed in the dimensionless form Aw/w, and the Korringa relaxation rate
Tl_1 are usually connected by the equation

2
LT (5‘-9) , (7.24)

w

which is known as the Korringa relation.

7.3 Spontaneously spin-split bands

The magnetic moment per atom in iron is about 2.2 up (see Table 5.1).
This non-integral value is not possible to understand on the basis of localized
moments on atoms. It is therefore strong evidence for band ferromagnetism
(also known as itinerant ferromagnetism) in which the magnetization is due
to spontaneously spin-split bands. In this section we will explore some models
which can be used to understand how bands in some materials can become
spontaneously spin-split.
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Fig. 7.5 Density of states showing sponta-
neous splitting of cnergy bands without an
applied magnetic field.

2The mofecutar fickd i due 1o exchange.
Exchange is due to the Coulomb interaction.
In mure advanced treatments. the Coulomb
energy is included directly as Unyn which
yields the same resulr,

Edmund C. Stoner { 1899- [968)

In molecular field theory we say that all spins ‘feel” an identical average
exchange field AM produced by all their neighbours. In a metal, the molecular
field can magnetize the electron gas because of the Pauli paramagnetism xp.
The resulting magnetization of the electron gas M would in turn be responsible
for the molecular field. This is a chicken-and-egg scenario (also known as
bootstrapping), can this positive feedback mechanism lead to spontaneous
ferromagnetism? Presumably yes, if A (expressing how much molecular field
you get for a given M) and xp (expressing how much magnetization you get
for a given molecular field) are both Jarge enough.

It is desirable to make the above heuristic argument a little more rigorous!
The question that we need to ask is: can the systemn as a whole save energy by
becoming ferromagnetic?

Let us first imagine that in the absence of an applied magnetic field we take
a small number of electrons at the Fermi surface from the spin-down band and
place them in the spin-up band. Specificaily we take spin-down electrons with
energies from EfF — 8§ E up to Ef and flip their spins, placing them in the spin-
up band where they sit with energies from Ep up to Eg + 8 E. This situation is
illustrated in Fig, 7.5. The number of electrons moved is g(Eg)8 £ /2 and they
increase in energy by 8E. The total energy change is g(Fg)SE /2 x §E. The
total kinetic energy change A Ex g is therefore

AEKE = ;g(EF){BE)z. (7.25)
This is an energy cost so this process looks unfavourable. However, the
interaction of the magnetization with the molecular field gives an energy
reduction which can outweigh this cost. The number density of up-spins is
%{n + g(Ep)8E) and the number density of down-spins is n; =
%(n — g(Eg) 8E). Hence the magnetization is M = pgln~ — ny), assuming
each electron has a magnetic moment of | zg. The molecular field energy is

n: =

= , .. 1 .
AEpy, = —f po(AM)dM’ = —'EMMM’ = -‘Eﬂul-fznl(ﬂ* —ny).
0

(7.26)
Writing U = ,u,u,uZBJk, where I/ is a measure of the Coulomb energy.? we have

i
AEpE. = —EU(g(EF}ﬁE}Z. (1.27)
Hence the total change of energy AE is
| 2 .
AE = AEKg + AEpg, = ig(EF)(éE)‘(l ~ Ug(Eg)). (7.28)

Thus spontaneous ferromagnetism is possible if AE < (0 which implies that

Ug(Er) = 1 (7.29)

which is known as the Stoner criterion. This condition for the ferromagnetic
instability requires 1hat the Coulomb effects are strong and also that the density
of states at the Fermi energy is large. If there is spontaneous ferromagnetism,
the spin-up and spin-down bands will be split by an energy A. where A is the
exchange splitting, in the absence of an applied magnetic field,



If the Stoner criterion is not satisfied, then spontaneous ferromagnetism will
not occur. But the susceptibility may be altered. We can calculate this easily by
including both the effects of an applied magnetic field and the interactions. The
magnetization produced by an energy shift 8 E is simply M = pup(Ny—N}) =
2upg(ER)SE. Thus

1
AE = 5 g(EpGE) (1 - Ug(Ep) — MB (7.30)
M2
= ——————(1—-Ug(Ep)) — MB (7.31)
2u}g(EF)
This is minimized when
——(1 - Ug(Ep)) —B=0 (7.32)
1hg(Er)
so that the magnetic susceptibility x is given by
M M Zo(E
gz M oM Houpg(EF) _ X (7.33)
H B 1-Ug(Ep) 1-Ug(EF)

This is larger than the value xp expected without the presence of Coulomb
interactions by a factor (1 — Ug(Ep)~ !, a phenomenon known as Stoner
enhancement. It is responsible for the enhanced Pauli susceptibility measured
in the metals Pd and Pt which can both be thought of as systems on the verge
of ferromagnetism; they have a large enough value of the parameter U g(EF)
to cause a significant enhancement of the magnetic susceptibility but not large
enough (i.e. not sufficiently close to 1) to cause spontaneous ferromagnetism.

7.4 Spin-density functional theory

So far we have used free electron models or nearly free electron models in
our discussion. It is possible to improve on this with more advanced methods,
and one of these will be discussed in this section. In real systems one cannot
ignore Coulomb interactions between electrons and the effect of exchange
interactions on the motion of the electrons. The positions and motions of all the
particles are correlated because the particles interact with each other and exert
forces upon each other as they move. Thus the interactions lead to correlations
appearing between particles. Such correlations can be very difficult to deal with
theoretically, but a useful and successful approach is that of density functional
theory.

In this theory it is recognized that the ground state energy of a many
electron system can be written as a functional? of the electron density n(r). The
functional contains three contributions, a kinetic energy, a Coulomb energy due
to the electrostatic interactions between the charged particles in the system,
and a term called the exchange-correlation energy that captures all the many-
body interactions. Rather than dealing with the wave function v (r), in density
functional theory one only has to consider the electron density n(r) = | (r)|?,
and this results in a considerable simplification. Minimizing the energy func-
tional leads to an equation which can be used to find the ground state energy.
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3 A function is a rule which maps one number
into another number. For example the func-
tion
flo=x

maps the number 2 into the number 4. A
functional is a rule which maps an entire
function into a number. For example, the
functional

1
FIf] = f_ Fwds

2

maps the function f(x) = x* into the num-

ber 2/3.



