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where 7 is the separation between the dipoles. Since the dipoles point along the x-axis and are of
the same magnitude we can write

_ M 2 3 229

E = = [“B—ﬁy’Br}v (11.122)
_ ot 2

E = 247"3;13.

Inserting numbers, pg = 9.274 X 10-2A - m? and r= 1 A, we have |E| = 1.7 x 1072 J. Dividing by
the Boltzmann constant the temperature scale is given by 1.25 K. This energy scale is low compared
to the Curie transition temperatures of ferromagnets such as Fe, Ni, and Co!

(b) The Coulomb interaction energy of a pair of electrons is given by

2
v = Z;?q? (11.123)
0
U = 1 (1.6 x 10719)2
= am(885x10-12) 1x10710 °
U = 23x1078.

The temperature scale corresponding to this energy is 1.67x 10°K!

So what does the above example teach us? It clearly demonstrates that magnetic dipole—dipole in-
teractions cannot explain the very high Curie-Weiss temperatures of Fe, Ni, and Co of 1043 K, 1400
K, and 627 K. Rather, consider the following scenario where two atoms with unpaired electrons in-
teract with each other. If the spins of these two electrons are antiparallel to each other, the electrons
can approach each other as close as possible, thereby raising the Coulomb interaction energy. How-
ever, if the states are parallel, the Pauli exclusion principle causes the electrons to stay as far away
as possible leading to a reduction of the Coulomb interaction energy. The order of magnitude of this
Coulomb interaction was estimated to be at 105 K in the above example. So even for a small change
~ of 1%, the cost associated with the process would be of the order of 1000 K, an order of magni-
tude similar to the Curie-Weiss temperature of the aforementioned ferromagnetic materials. Thus,
the key to explaining magnetism is the combined effect of Coulomb interaction energy and Pauli
exclusion principle. These two basic ideas give rise to what is known as the exchange interaction.
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1926 to interpret the origin of the large Curie-Weiss transition temperature.
To derive a quantum mechanical expression for the exchange interaction energy, consider two elec-

given by
2
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Iy = .}%(?1) + %(72) =y
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The one-electron eigenenergies E, and Ej are given by

B Ya(F) = Ea¥a(F),
By (F) = EpY(7)-
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\ 342 state where orbital character is fixed to d-orbitals, but the spins can vary. We then have 10

possible wavefunction combinations. Two with parallel spins and two with antiparallel spins.
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The exchange interaction was introduced by the german theoretical physicist Werner Heisenberg in

trons, for example, in the 3d? state. The state of each electron is specified by the product of the
orbital wavefunction y(7) and spin wavefunction (spinor, %(5)). It will be assumed that the one- -
electron problem has been solved and the orbital wavefunctions of the two electrons are given by

the two orthonormal eigenstates Wa()) and (7). For the T (4) spin electron state, we choose the
normalized spinor wavefunctions as &(s)(B(s)). The Hamiltonian for the two-electron problem iS

consisting of two spin independent one-electron Hamiltonian J%(F) and the Coulomb interacti(m;_

To proceed further we will diagonalize the two-electron Hamiltonian %, in the subspace of the

OV,

Exchange Interaction
= 12 = (L4,
- s 2! 1/?4.
: quanufm mechalnu?s informs us that for electrons, which are fermions, the overall wavefunction must
- be antisymmetric in order to satisfy the Pauli principle. The easiest way to ensure this condition is
to construct the Slater determinant. When both spins point up, we can write i
. U va(R)a(s1)  walF :
w. = L[|e(P)als) va(F)als) 5 ‘g |
1Y T Zlwals) wEal)] isl 2t ULIzn '
1 <
. = selal) ) - vl PO ® (1.128)
With both spins pointing down, we can write
¥, L |wa(m)B(s1)  wa(F2)B(s2)
V2 B0  wi(m)B(s)| L
1 b‘
Wy = BB Wl () ~ alF) v (11.130) |
i
For the antiparallel combinations we have [
g = L[w0Be) v ’
\1"1/ V2 ws(f)als)  vi(P)als)|’ LA |
1 = -
¥ = 7 [Wa(F1)Wo(P2) B (s1)0(s2) — W (1) Wa(F2) ae(s1) B(52)] s (11.132)
and
¥, = L |Wa(F)a(si)  va(Fa)ex(s2)
(o V2B w(7)B(s2)| Wi
% l . . -
¥ = 7 [Va(F)Wh(F2)ae(s1)B(s2) — Wo(F1) Wa(F2) B(s1 ) x(s2)], (11.134)
We now diagonalize the /¢, in the subspace of

%) = [¥s, ¥ yp, P 1) (11.135)

Using the above definition we construct the 4 x 4 matrix obtained by taking the expectation value
of the two-electron Hamiltonian, /%,

Eq = (¥4, ¥yp, Wy, Pl P, Wip, Uy, B0 (11.136)

ZNe now neéd to compute: each and every possible combination of matrix element. Since it is a

(1:( 4 matrix, we ha\fe sixteen possible choices. In Exercise 11.11.19 you will derive Equation

. c-hl;zlz;r:;dz tl(liebsolunons ff)r the singlet .(ES) and triplfet (E:,) eigenenergy states. The singlet state

e 1;: y abstate wnh.only one eigenenergy (since total S = 0, nmis can take only one value)

S mg state y.thre.e (since total S =1, ]115 can take three values 0, 1), hence their names.

v ment we wn'll simply state ‘lhe solution of the two-electron energy matrix and focus on
physical interpretation of the solution. The solution is given by the expression

(x) 000 Kap—Joy 0 O 0

Ey = (E, - & ] T =t 0

‘el ( [1+Ell) 0 0 l O + 0 —aab Katl],) 0 ? (l l-l37)
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ith E; and E,, given by \

E = Eq+Ep+Kyp +qu,
Ea + Eb 4 Knb '—Jﬂb.
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In the above equations, we have introduced the definitions

Ea = (¥ |55(F)| W) = (\yﬁ,\yn,wu,\yu|yﬁ,(?.)]wﬁ,\{f”,wu,wu), (11.140)

Ep = (Y|AG(72) ) = (Wrp, i1, Pps, W)y [P (F2)| War, Wi, s, Wiy ) (11.141)
é? 2 .

Kap =//d7|d72|Wn(Fl)lszb(hN » (Coulomb integral) (11.142)
1—n

and
e?_
L= / / APV () W3 F2) G ¥ 1) WalF2). (Bxchangs integra) (11.143)

Example 11.8.0.2
Show that the energy for the singlet and triplet state can be combined into a single expression as

= Es+&iEs_EIr.

11.144
E > 3 ( )
Solution
Adding the two eigenenergy expressions we get
Es+E,

Ea+Ep+ K = —’J;—" (11.145)
and subtracting the two eigenenergies we have

oy = BB (11.146)

2
Thus we can write
Es+E,  E;—E
E=Eq+Ey+ Koty = T Eur  Es—Eur (11.147)

2

Inspecting the singlet and triplet energies we observe that since J,;, > 0, the energy of the triplet .
energy state will always be lower than the singlet. For orthogonal orbitals participating in a direct

exchange process, we find that a § = 1 state is favored over S =0 . Direct exchange operates between
spins which are close enough to have sufficient overlap of their wavefunctions. It gives a strong but
short range coupling which decreases rapidly as the ions are separated. What does this mean? It
implies that ferromagnetism is always the choice of ground state. Intuitively, this makes sense if we
keep in mind that two parallel electrons because of the Pauli exclusion principle will try to avoid
each other as much as possible to try and reduce the Coulomb repulsion between them. However,
with antiparallel spins, such as in the singlet state, quantum mechanics does not forbid the eleclIOf'
spins to get closer to each other thercby raising the Coulomb repulsion energy. There is a techni-
cal name for this — it is called the exchange hole effect. Note, that with non-orthogonal orbitals
either the singlet or the triplet state can be favored based on the degree of overlap. In fact, in nes
ture antiferromagnetism (anti-aligned spin configuration) is seen more often than the ferromagnetic.

arrangement we just discussed. ‘ 3
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Example 11.8.0.3
Show that for two electron spin operators S1 and §5 we have

s o i N
2S1-Sz+;=(51+53) ~1 (11.148)
Evaluate the above expression for the case of (i) a singlet and (ii) a triplet state.

Solution

We start off by noting that S = 1/2 for an electron. For two electrons the total spin is given by

§ = 81 + 8. Squaring both sides gives
@2
1

S = . 2
$ B p28 -5 = (s1+s2) ) (11.149)

Now, using Equation (11.9) for both the spin 1/2 operators we have

- - 2y - N2
(S +D)+281-5 = (5i+5),
1/1 Lo L a2
25<5+1>+2s1‘sz = (s1+s2),
oL L L\2
=28-8+5 = (sl+s2) 1, (11.150)

For a singlet the total S = 0. Thus we have
0 i : ~\2
2S|-Sz+i=(S|+Sz) ~1=-1 (11.151)
For a triplet state § = 1. Thus
By = (5i+5) -1
= S-1=SS+)-1=1(1+1)=1=1. (11.152)

Let us pause here for a moment and make the following observations. From Example 11.8.0.2 we
know that the two-electron energy can be combined into a single expression involving the total
singlet and triplet energies and the relative singlet and triplet energies, with a 1 factor in between.
But note from Example 11.8.0.3 we learned we could generate a + simply out of the space of two
spins interacting with each other. Thus we could in principle mimic the energy expression simply
outof a set of spin operators and not worry about the space components. This remarkable connection
was put forward by Paul A. M. Dirac (1902—1984). His brilliant insight allows us to combine all
these facts into a single Hamiltonian expression dependent only on spin operators and now popularly
known in the magnetism community as the Heisenberg exchange Hamiltonian Ftex. The explicit
expression for a pair of electron spins is given by
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Eyr —E, r 1 s i
Ay = Es+E, _E-E, 88 By ), 76“]’/’\' /3) (11.153)
2 2 2
= const. — 2/;55; - 5. (11.154)

Finally, dropping the constant energy term, absorbing the factor of two in the definition of the
exchange constant, and generalizing the interaction to act between any two electron pairs in the

- Magnetic solid we have

K=~ ¥ 155:-5,, (11.155)
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