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Abstract. We report on electrically switchable polarization and ferroelectric
domain scaling over a thickness range of 5–100 nm in BiFeO3 films deposited on
[110] vicinal substrates. The BiFeO3 films of variable thickness were deposited
with SrRuO3 bottom layer using the pulsed laser deposition technique. The
domains are engineered into preferentially oriented patterns due to substrate
vicinality along the [110] direction. The domain width scales closely with the
square root of film thickness, in agreement with the Landau–Lifschitz–Kittel
(LLK) law. Switching spectroscopy piezo-response force microscopy provides
clear evidence for the ferroelectric switching behavior in all the films.
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1. Introduction

Recent studies on BiFeO3 (BFO) thin films are guided by two aspects: tetragonality and
vicinality. BFO films deposited on large lattice mismatched substrates such as LaAlO3 show
monoclinically distorted tetragonal structure [1, 2]. The stabilization of the pure tetragonal phase
remains elusive, although theoretical calculations suggest strain [3] and electric field [4] induced
phase stabilization or transition. We have reported on the ferroelectric behavior of strain relaxed
BiFeO3 thin films on lattice mismatched substrates [5] and have also pursued the tetragonality
issue for the fundamental understanding using piezo-response force microscopy (PFM) and
polarized Raman spectroscopy techniques [6, 7]. On the other hand, deposition of BFO films on
vicinal substrates can assist in the engineering of ferroelectric domain structure [8, 9]. Such films
have two domain variants as compared to four domain variants observed in thin films deposited
on plain substrates. As a consequence, ferroelectric switching is better on vicinal substrates. We
reported the reduction of coercive field through the domain engineering approach [10]. BFO
films deposited on SrTiO3 substrates with 4◦ miscut along the [110] direction exhibited a higher
polarization value and a significantly reduced coercive field. It is clear that the domain structure
plays a vital role in governing technologically important parameters such as polarization and
coercive field. However, a detailed study of the nature of such domains with broken symmetry
has not been reported so far.

Universally, ferroelectric or ferromagnetic domains follow the Landau, Lifshitz and Kittel
(LLK) law wherein the domain width scales with the square root of film thickness [11]. The
original scaling law, also referred to as the ‘Kittel law’, was extended to ferroelastic domains in
thin films by Roytburd [12]. A detailed account of domain studies has recently been reviewed
by Catalan et al [13]. In the particular case of BFO thin films deposited on plain SrTiO3

substrates, Catalan et al [14] reported deviation from the LLK law. Such a deviation was
primarily attributed to the fractal dimensionality of domains in the thin film deposited on plain
[100] substrates. In contrast, the first principle-based study of ultrathin BFO films by Prosandeev
et al [15] suggested that the Kittel law is followed in the case of straight-walled domains.
They argued that the interaction between tilting of oxygen octahedra around domain walls
and magnetoelectric coupling plays an important role in the validation of the Kittel law. For
this work, we deposited 5–100 nm thickness BFO films on SrTiO3 substrates with 4◦ miscut
along the [110] direction. The [110] direction of miscut is the requisite criterion to break
domain symmetry through sawtooth step pattern [10]. We verified the structural quality of the
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films using the x-ray diffraction (XRD) technique. Crystallographically oriented domains with
variable dimensions were observed using PFM. We confirmed the variation of the domain size
with film thickness in agreement with the LLK law. We also provide unambiguous evidence for
ferroelectricity in ultrathin (up to 5 nm) BFO films using the advanced switching spectroscopy
piezo-response force microscopy (SSPFM) technique.

2. Experimental details

We have deposited BiFeO3 (BFO) thin films of variable thickness in the range 5–100 nm on
(100) SrTiO3 substrates with 4◦ miscut along the [110] direction. The BFO films with SrRuO3

(SRO) bottom layer were deposited sequentially using the pulsed laser deposition method
[10, 16]. The crystalline quality and out of plane lattice parameters were determined using x-ray
diffraction (X’pert Pro. Panalytical) with CuKa radiation. The surface topography and domain
structure were revealed using atomic microscopy and PFM under ambient conditions. For this
purpose, the commercial Scanning Probe Microscope (Cypher, Asylum Research) equipped
with a Pt-coated conducting tip (AC240TM, Olympus) was operated at the resonance frequency
of about 260 kHz and the ac bias amplitude of 2 V. The same setup was augmented to carry out
advanced SSPFM measurements [17, 18]. We used a 25 × 25 grid on 2 µm × 2 µm scan area to
map the local polarization switching with variable tip bias between +10 and −10 V.

3. Results and discussion

3.1. Structural analysis

The XRD patterns of 100, 50, 20 and 10 nm BFO films deposited with 40 nm SRO bottom
layer on STO substrates with 4◦ miscut along the [110] direction are shown in figure 1(a). The
inset shows clearly distinguishable (100) peaks. The highly oriented textured growth of the
films is evident from the appearance of (00l) peaks. The representative omega and phi scans
shown in figures 1(b) and (c) clearly reveal the crystalline quality and epitaxial nature of these
films. The full-width at half-maxima (FWHM) values for the omega scan were around 0.04◦

and the phi scan exhibited fourfold symmetry. The out of plane lattice parameters determined
from XRD data were 4.01, 4.05, 4.06 and 4.08 Å for the 100, 50, 20 and 10 nm thickness
films, respectively. The bulk value of the psudo-cubic lattice parameter is 3.96 Å. However,
the substrate-induced in-plane compression of unit cells causes out of plane elongation. It has
been reported that the lattice parameter varies with the substrates [19], with film thickness [20]
and with operating oxygen pressure [21]. Our films seem somewhat constrained with reducing
thickness, which is in agreement with the reported behavior for other miscut substrates [8].

3.2. Ferroelectric domain scaling

Surface topography scans of 2 µm × 2 µm areas of 100, 50, 20, 10 and 5 nm thickness BFO
films are shown in figures 2(a)–(e), respectively. In general, BFO films are known to grow in
the three-dimensional (3D) island growth mode [8]. However, the step flow growth mode has
been reported on orthorhombic DyScO3 substrates [22], on the miscut substrates [8, 19] and
possibly with growth under optimized oxygen pressure [21]. The parallel steps with larger width
resulting from step bunching were reported on the substrates with 4◦ miscut along the [100]
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Figure 1. (a) XRD patterns for 100 nm (V119), 50 nm (V120), 20 nm (V121)
and 10 nm (V122) BiFeO3 films deposited with SrRuO3 bottom layer on [110]
vicinal SrTiO3 substrates. Inset: resolved (001) peaks. Representative omega (b)
and phi (c) scans to reveal crystalline and epitaxial nature.

direction [8, 19]. On the other hand, when the miscut angle is along the [110] direction, as
in the present case, the steps have a sawtooth pattern. The parallel steps promote a nano-wire
kind of growth along the steps or perpendicular to the miscut direction. The sawtooth steps may
promote nano-particle kind of growth on the triangular steps [10]. Further, step bunching is
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Figure 2. The surface topography scans (a–e) and corresponding ferroelectric
domain structures (f–j) of 2 µm × 2 µm areas of 100, 50, 20, 10 and 5 nm
thickness BiFeO3 films, respectively.

possible, making the sawtooth patterns more washed out. In figures 2(a)–(e), the topographical
patterns show traces of sawtooth step flow growth. They are similar except that the grain size
becomes smaller with decreasing thickness of the films.

The evolution of ferroelectric domains with variant film thickness, recorded through
vertical PFM, is shown in figures 2(f)–(j). The black and white contrasts in these images
indicate polarization components pointing in the down and up directions, respectively. It has
been documented that the BFO films have four and two polarization variants when deposited
on exact and [100] vicinal substrates, respectively [8, 19]. The domains have large size and
stripe patterns running perpendicular to the vicinal direction. Jang et al [8] attributed such a
pattern formation to the relaxation of elastic-strain energy of the films on step surfaces without
the need for two additional domain variants. However, the vicinality along the [110] direction
yields a sawtooth step pattern, which may break the symmetry of stripe domains. It results
in two variant domains with a pattern intermediate between stripe and fractal. These domains
have crystallographic orientation and straight wall features such as stripe domains. However,
the orientation is confined to smaller areas due to sawtooth steps of the vicinal substrate.
Such domains can have double advantages, better polarization due to two variants and better
switchability, resulting from step-edge dislocations [10]. Similar types of small bunches of
striped ferroelastic domains are reported in compressively strained TbMnO3 films deposited
on SrTiO3 substrates [23].

An important feature of these domain patterns is the systematic reduction of domain size
with thickness. The contrast patterns with reducing dimensions were seen in up to 10 nm
thickness films. The 5 nm thickness film did not show the signature of domain formation,
probably owing to crosstalk interference. On plain STO substrates, Daumont et al [24] could
not detect the contrast in 12 nm thickness BFO films, whereas Catalan et al [14] reported fractal
domains in up to 7 nm thickness films. They also reported that the average domain size departed
from the classic LLK square root dependence on film thickness with the scaling exponent
γ = 0.59. The variation of domain width as a function of film thickness for BFO films on
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Figure 3. The variation of domain width as a function of film thickness for BFO
films deposited on [110] vicinal substrates.

vicinal substrates is shown in figure 3. The curve fitting to the law

w = Adγ , (1)

where w is the average domain width and d is the film thickness, gave the scaling exponent
value γ = 0.49 ± 0.05, which is very close to the LLK value of 0.5 [11]. However, it is smaller
than the value 0.59 reported by Catalan et al [14] for BFO thin films on plain substrate. On
the plain substrate the domains in the thick film are larger with four polarization variants. The
reduction of film thickness can cause a rapid reduction in domain size, making the scaling
exponent greater than 0.5. On the other hand, the use of [110] vicinal substrates yields small
bunches of preferentially aligned domains. A low crystal anisotropy and pinning defects may be
responsible for such appearance [25]. The terraces, steps, kinks, etc on [110] vicinal substrates
can provide ample sites for the domain formations. Therefore, the domain size reduction with
thickness may not be as rapid as in the case of plain substrates. The square root dependence of
equation (1) can also be rewritten as [26]

w = (G/δ)1/2 dγ , (2)

where G is an adimensional parameter and d is the domain wall thickness. The constant G is less
dependent on materials. An accurate estimate of G is possible for regular stripe domains with
thick domain wall. In the present case, however, the domains are of intermediate type with very
small wall thickness. Therefore, it is difficult to estimate the G value accurately. Nevertheless,
the combined value of (G/d)1/2 that corresponds to the y-intercept of the fitted curve in figure 3
is 12.3. Thus, the [110] vicinal substrate assists in the growth of two variant, small-size domains
which follow LLK scaling closely. Such domains are more vulnerable to applied electric field
and can be switched with lower field [10]. Prosandeev et al [15] have predicted that the Kittel
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Figure 4. Switching behavior of BFO films of variable thickness as revealed
through SS-PFM: (a) amplitude, (b) phase and (c) piezo-response signals as a
function of tip bias.

law can be obeyed in BFO films containing stripe domains rather than fractal states. Our study
confirmed that the scaling is indeed followed for intermediate types of domains.

3.3. Ferroelectric switching behavior

The electrical switching behavior of our films is shown in figures 4(a)–(c). The characteristic
butterfly loops were observed in amplitude signals of all the BFO films including the 5 nm
thickness film (figure 4(a)). Figure 4(b) shows the phase signal indicative of a clear switching
behavior. The collective piezo-response shown in figure 4(c) also confirms that clear and
complete polarization switching can be accomplished within the bias of ±10 V. It gives
unambiguous evidence for the occurrence of ferroelectricity in BFO films as thin as 5 nm
deposited on vicinal substrates. The ferroelectricity remained mostly unaffected throughout the
grid of measurement and over multiple cycles of voltage applications. Although Bea et al [27]
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observed PFM pattern for 2 nm thickness BFO films deposited on plain substrate, they have
not reported switching behavior. Moreover, the use of vicinal substrate in the present study is
more promising to obtain low-voltage switching [10]. It is difficult to quantify the magnitude of
polarization and coercive field from SSPFM data alone [18]. The macroscopic measurements
on thick films indicated that the effective switching of BiFeO3 films on [110] vicinal substrates
can be accomplished with a lower voltage or reduced coercive field. The reported values of
coercive field for BFO thin films deposited on plain substrates are mostly around 200 kV cm−1,
whereas on [110] vicinal substrate it is 78 kV cm−1 [10]. Therefore, the 5 nm BiFeO3 films
deposited on [110] vicinal substrate may satisfy the dimensional constraints for tunneling as
well as the existence of switchable ferroelectricity. The current device demand not only requires
reliable switching behavior, but also switching at a much lower energy. This work provides a
clear demonstration of the possibility of achieving such an objective through the use of vicinal
substrates.

4. Conclusions

We deposited 5–100 nm thickness BiFeO3 films on vicinal SrTiO3 substrates with 4◦ miscut
along the [110] direction. The epitaxial and constrained films showed traces of sawtooth step
flow growth in topographical features. The PFM revealed two variant, preferentially aligned
domains. The domain width scaling with film thickness closely followed the LLK law. It
endorsed the fact that the universal LLK law is valid for preferentially aligned ferroelectric
domains in BFO thin films. A clear switching was observed through SSPFM in all the films
including the ultrathin 5 nm film. Such domain engineered ultrathin films have better potential
for the fabrication of multiferroic tunnel junctions.
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