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Optical bandgap properties of high-quality few-layer topological insulator Bi2Se3 thin films are

investigated using broadband absorption spectroscopy. We provide direct optical evidence for blue

shift in the bulk bandgap of Bi2Se3 as it approaches the two-dimensional limit. The blue shift is

robust and observed in both protected (capped) and exposed (uncapped) thin films. The behavior is

strongest below six quintuple layers (QLs), particularly at the 2 and 3 QL level, where finite-size

effects are known to be most significant in Bi2Se3. A further bandgap increase is observed in all

films that we attribute to the Burstein-Moss effect. Our result provides additional insights into the

scaling behavior of topological materials. The bandgap increase has a significant impact on the

electronic and optoelectronic applications of topological insulators. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982631]

Topological insulators (TIs) have gained much attention

in basic and applied physics research due to the existence of

“topologically protected” gapless surface states.1–3 Such

quantum states are immune to non-magnetic impurities as

the electron momentum remains locked to its spin.4 The

room temperature discovery of the protected states in real

materials with a strong spin-orbit coupling (such as BiSb,

Bi2Se3, and Sb2Te3) without the application of an external

magnetic field is also interesting for device applications in

spintronics and fault-tolerant quantum computing.5–10

Bi2Se3 is a prototypical example among 3D Topological

insulators.4 A single Dirac cone was observed at the C point

in bulk Bi2Se3 using angle-resolved photoemission spectros-

copy (ARPES)3,11,12 and scanning tunneling microscopy

measurements.13 It is classified as a strong topological insula-

tor,14 where the surface states retain zero-gap despite the

presence of atomic-level non-magnetic impurities. The litera-

ture on Bi2Se3 thin films is also growing. Recent experiments

demonstrated proximity-induced superconductivity15,16 and

ferromagnetism,5 both phenomena associated with symmetry

breaking. Exotic effects such as the Quantum anomalous Hall

effect are also reported at ultralow temperatures.17–19

Many applications of TIs such as Bi2Se3 will rely on

their scaling behavior. It is, therefore, important and intrigu-

ing to ask as to what happens to such exotic materials as they

approach the two-dimensional limit? Thin films provide an

ideal platform to investigate such topics. One of the more

intriguing consequences of finite-size effects in TIs is

the opening of an energy gap in the surface states.20–24

Experimentally, this was directly verified by Zhang et al.25

and Sakamoto et al.26 in ultra-thin Bi2Se3 films. The gap

opening is substantially large (�few tenths of eV). Weak

localization effects also produce a gap opening in few-layer

Bi2Se3, but it is of the order of meV.27,28 Also, recently,

Vargas et al. reported a large blue shift in Bi2Se3 nanopar-

ticles, which they attributed to quantum-confinement effects

in all directions.29 All these reports demonstrate that finite-

size can have a profound impact on topological materials. In

this work, we report that bulk optical bandgap changes also

occur in such materials in the 2-dimensional limit.

Investigation of optical properties of Bi2Se3 thin films

has been a subject of previous studies. Variation of bulk

bandgap with thickness has also been noted. Post et al.30

studied uncapped 15–99 quintuple layer (QL) Bi2Se3 films

and found bandgap values below 0.3 eV that are attributed to

impurity states or surface contamination. Eddrief et al.31

measured the optical properties of 3–54 QL Bi2Se3 thin

films. While they cover a broad thickness range, the optical

properties of the 3 QL film do show a behavior that is consis-

tent, but not clearly reported, with an increase in the

bandgap. Higher optical transmittance in 5 or 6 QL Bi2Se3

films has been reported that implies a higher bandgap.32,33

However, a systematic bulk bandgap investigation is lacking

at the two-dimensional (few-layer) limit of Bi2Se3.

Here, we report the optical properties of few-layer

Bi2Se3 (�2–10 QL) thin films. High-quality Bi2Se3 films

(both capped and uncapped) were grown on Si/SiO2 and

quartz substrates using radio frequency magnetron sputter-

ing. We have discovered up to 0.5 eV increase in the bulk

bandgap of Bi2Se3 as the thickness is reduced to 2 QL. We

explain the blue shift as due to a combination of bulk

electronic structure changes at lower dimensions and

Burstein-Moss (BM) effect. The blue shift is robust and

observed in samples with and without a protective capping

layer. Our work consolidates a growing number of studies

that highlight finite-size effects in topological materials.

In this work, high-quality Bi2Se3 few-layer thin films

were fabricated in the 2–10 nm thickness range that roughly

translates to 2–10 quintuple layers (1 QL �0.95 nm). Bi2Se3

was grown using a commercially available stoichiometric

target, and sputtered in a high vacuum magnetron sputtering

system (base pressure 4� 10�9 Torr). Bi2Se3 films were

grown at room temperature and annealed in-situ at 300 �C.

We recently employed a similar method to grow other large-
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area layered materials such as MoS2.
34 The films were grown

on Si/SiO2(100 nm) substrates for the X-ray, Raman, and

ellipsometry analysis, and on transparent quartz substrates

for the absorption spectroscopy study. To protect the surface

from contamination and oxidation and yet retain optical

transparency at the infrared and visible wavelengths, some

Bi2Se3 thin films were capped with an amorphous BN layer

grown in-situ at room temperature.

Structural and interface properties were characterized by

high-resolution X-ray diffraction (XRD) and reflectivity (XRR)

using a Rigaku Smartlab Diffractometer equipped with a Ge

(220) monochromator to obtain Cu Ka1 radiation. Raman spec-

troscopy was employed to confirm the vibrational modes of

Bi2Se3 using a Nanophoton Raman-11 with a 532 nm laser.

The laser power was kept low at 10 mW to avoid local heating.

Optical constants such as complex dielectric constants (e1,e2)

were investigated using a spectroscopic ellipsometer

(JA Wollam M2000V, 1.1–3.0 eV), and the optical bandgap

was measured using a broadband optical spectrometer

(Shimadzu UV-3600 Plus) in the 0.375–6.2 eV range. Hall

measurements were done using a NanoMagnetics Instruments

ezHEMS system.

Figure 1 shows the structural characteristics of an

uncapped 10 nm Bi2Se3 thin film grown on Si/SiO2 substrate.

In Fig. 1(a), we show the X-ray reflectivity (XRR) data of

the film. The oscillatory thickness pattern of the �10 nm

Bi2Se3 layer and the 100 nm SiO2 layer is observed. This is

indicative of sharp interfaces. The thickness and roughness

values as obtained from the reflectivity fit35,36 are shown in

the inset of Fig. 1(a). A roughness of �0.4 nm is less than

half a quintuple layer. The extracted density of the Bi2Se3

film is also in very good agreement with the bulk value. Fig.

1(b) shows the high-resolution theta-2theta X-ray diffraction

(XRD) pattern of the 10 QL Bi2Se3 film. Clear diffraction

peaks are identified for the (002) silicon substrate (labeled as

“sub”) and (000l) peaks of Bi2Se3. This is indicative of out-

of-plane growth. Thickness fringes are also observed around

the (0003) and (0006) peaks, which imply very smooth films.

Off-axis measurements on high Miller indices peaks gave

a¼ 4.17 Å, c¼ 28.56 Å. The XRR and XRD data of the 6

QL film are shown in Fig. S1 (see supplementary material).

Taken together, we confirm that the properties of few-layer

Bi2Se3 films are of superior bulk and interface quality.

Additional crystalline structure characterization was also

performed using Raman spectroscopy. The raw data and the

line shape fits are shown in Fig. 1(c). Clear Raman modes

were observed at �72.0 cm�1, 131.1 cm�1, and 174.6 cm�1

which correspond to A1
1g, E2g, and A1

2g modes of Bi2Se3.37

The full width at half maximum is �5 cm�1 for the A1
1g

mode and �9–10 cm�1 for both the E2g and A1
2g modes.

These values are comparable to few-layer single crystals37

and reiterates the high crystalline quality of the films.

We now discuss spectroscopic ellipsometry investiga-

tions performed in the spectral range of 1.1–3.0 eV. The

ellipsometry spectra W (relative amplitude change) and D
(relative phase shift of the polarization) for the 10 nm Bi2Se3

film is shown in Figure 2(a). These data were modeled utiliz-

ing 3 Tauc-Lorentz oscillators. Table I summarizes the fit-

ting results (see supplementary material for details about the

model and fitting parameters). The substrate was modeled

separately and then incorporated into the filmþ substrate

model. The real and imaginary parts of the complex dielec-

tric constant are shown in Fig. 2(b). Two peaks are observed,

the strongest one at 2.0 eV and a shoulder at 1.4 eV (arrows

in e2 data), which agrees very well with reports on MBE

samples.31 Band structure calculations can identify multiple

candidates responsible for these transitions (both direct and

indirect).23,24 Even though the spectral range of our ellips-

ometry measurement is limited, empirical bandgaps can be

inferred from the Tauc gaps (Eg) of the model oscillators

(Table I). Ignoring the broad background oscillator (TL1),

we find that the first Tauc gap is at 0.376 eV (Eg value for

the TL2 oscillator), which is close to the gap value measured

through absorption spectroscopy that is discussed next.

To perform the transmittance measurements, the Bi2Se3

samples were deposited on transparent quartz substrates.

Two set of samples of thickness 2–10 QL were fabricated.

One set was capped with a few nm of amorphous and trans-

parent BN (bandgap> 5.5 eV) and the other set was left

uncapped. This allowed us to protect the Bi2Se3 layer with-

out affecting its visible and infrared transmittance. To

FIG. 1. (a) High-resolution X-ray reflectivity of the �10 nm Bi2Se3 thin film grown on Si/SiO2 substrate. The inset shows the thickness and roughness value of

the Bi2Se3 film as obtained from the fit of reflectivity data. (b) The X-ray diffraction pattern of the 10 nm Bi2Se3 film showing only (000l) peaks, implying out-

of-plane growth. (c) Raman vibration modes of the Bi2Se3 film showing the characteristic A1
1g, E2g, and A2

1g modes.

FIG. 2. (a) Experimental and fitted Psi (W) and Delta (D) for the 10 QL

Bi2Se3 sample on Si/SiO2 for incident angle of 70�. (b) Extracted complex

dielectric constants (e1,e2) of the film fitted in (a).
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ascertain the impact of oxidation and other surface changes

on the optical characteristics of the films, we measured the

transmittance of several capped and uncapped films at vari-

ous times after deposition. In Figure 3, we show the data for

the 2 QL film, which is the thinnest film studied, where pre-

sumably the oxidation effect, if any, should be the strongest.

As expected, the uncapped sample demonstrated some

change in its optical transmittance, but it is only a few per-

cent and mostly in the high-energy range (500–900 nm). The

observed change is less than 10% even after 7 days (data not

shown), proving that the optical transmittance properties

were not affected to any significant degree even at the 2 QL

level. The BN capped sample did not show any change as

evident from the perfect overlap of the data taken after 6 min

and 4 h. We, therefore, infer that even though capping

improves reliability, oxidation and other extrinsic effects do

not dominate our optical measurements.31 Encouraged by

these developments, we proceeded to measure the bandgap

on both types of samples.

In Figure 4(a), we plot the optical absorption values of

the 2 and 6 QL films as calculated from transmittance (T)

through the relation a¼�(1/thickness) * ln T. Various opti-

cal features are observed that agree qualitatively with the 10

QL sample (Fig. 2 and Fig. S3 (supplementary material)).

The most striking dissimilarity between the two films is the

rigid blue shift in the 2 QL sample compared to the 6 QL

data. This clearly indicates that the bulk bandgap of the two

systems are different. The blue shift in the absorption data

continues up to 3.5 eV, above which the optical characteris-

tics overlap well.

To quantify the direct bandgaps accurately, we plot the

(aE)2 vs the photon energy in Fig. 4(b). Though this method

was developed to measure optical properties of semiconduc-

tors with parabolic bands, it has been extended to other sys-

tems. Using this method, the measured bandgap for the 2 QL

film is found to be �0.8 eV, whereas the value for the 6 QL

film is �0.5 eV. Extending this analysis to all films, we plot

the bandgaps of all capped and uncapped samples. A strong

increase in bandgap with decreasing thickness is observed

regardless of capping. In particular, 2 and 3 QL films show

the largest increase. We attribute this to finite size effects.

The evidence for this is found in Zhang et al.25 ARPES

measurements show that the valence band maximum of a 2

QL film is about 0.3 eV deeper compared to the 6 QL film,

which is exactly the bandgap difference we measure.

Therefore, we infer that a bulk gap widening also occurs

below 6 QL along with a surface gap opening. Very recent

first-principles calculations also confirm this observation.38

Another important observation is that the bandgap val-

ues of thicker films (10 QL or more) are considerably larger

than the reported bulk value by about 0.2 eV. We explain

this as due to the Burstein-Moss (BM) effect, which is

observed in semiconductors with high carrier concentrations

(>1018 cm�3).39 In such cases, the Fermi level moves to the

conduction band and results in an apparent increase in the

bandgap due to Pauli blocking of occupied conduction band

(CB) states. Preliminary Hall effect studies on our 10–30 QL

films revealed a carrier concentration in excess of 1019 cm�3

which is typical of Bi2Se3.
40 Quite revealing is the ARPES

and transport work by Analytis et al.39 that showed that

states up to 0.15 eV above the CB minimum are occupied in

samples with concentrations above 1019 cm�3. This is consis-

tent with increased bandgap values we report here.

Therefore, it is clear that the BM effect is also producing an

increase in the bandgap values in all films, apart from finite-

size effects.

In conclusion, we have provided optical evidence for

blue shift in Bi2Se3 thin films as we approach the two-

dimensional limit. High-quality few-layer Bi2Se3 films were

grown using magnetron sputtering, and their structural and

optical properties were investigated using X-ray, Raman,

spectroscopic ellipsometry, and transmittance spectroscopy.

Up to 0.5 eV change in bandgap is observed, and most signif-

icantly below 6 QL. The effect is robust and is observed in

both capped and uncapped films. We explain the increase

through a combination of finite-size and Burstein-Moss

effect. Overall, our data sheds more evidence into the scaling

behavior of TI systems that can potentially have interesting

TABLE I. Fit parameters of Tauc-Lorentz oscillators.

e1 ¼ 1:44

Oscillator Amp En C Eg

TL1 1.239 1.436 0.375 0.0001

TL2 74.59 2.504 2.965 0.376

TL3 30.075 1.999 0.88029 0.5221

FIG. 3. Transmittance data of an uncapped (a) and BN-capped (b) 2QL

Bi2Se3 film taken at different times after film deposition. The uncapped sam-

ple showed only little variation with time whereas the capped sample did not

show any change at all.

FIG. 4. (a) Optical absorption data of 2

and 6 QL Bi2Se3 films showing a blue

shift with inverse thickness. (b) Direct-

gap analysis of the data shown in (a).

The blue shift is clearly quantified. (c)

The direct bandgap for films of differ-

ent thicknesses. Both capped and

uncapped films follow the same trend

of increasing bandgap with inverse

thickness.
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consequences in future nanoelectronic devices. The increase

in bandgap can also be utilized in opto-electronic areas such

as photodetector and solar cells.

See supplementary material for additional data and dis-

cussion on x-ray reflectivity/diffraction and ellipsometry

measurements.
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