Physics 2414, Spring 2005 Group Exercise 6, Mar 24, 2005

Name 1:	OUID 1:
Name 2:	OUID 2:
Name 3:	OUID 3:
Name 4:	OUID 4:

Section Number: ____

Work and Energy

A mass m moves from point '1' to point '2' under the action of the force $\vec{\mathbf{F}}$. Kinetic energy of the mass is given by the expression

$$K = \frac{1}{2}mv^2 \tag{1}$$

where v is the velocity of the particle. The change in kinetic energy of the mass is

$$\Delta K = K_f - K_i \qquad (2)$$

$$= \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \qquad (3)$$

Work done by the force $\vec{\mathbf{F}}$ on the mass m is given by the expression

$$W = |\vec{\mathbf{F}}| d\cos\theta \tag{4}$$

where, $d = |\vec{\mathbf{d}}|$ is the magnitude of displacement of the mass m, and θ is the angle between the force vector and the displacement vector (see figure).

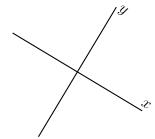
The work done on the mass m equals the change in kinetic energy. The expression relating this is given by

$$\Delta K = W. \tag{5}$$

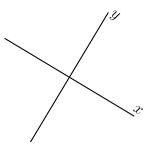
If there is more than one force acting on the mass, the change in kinetic energy equals the total work done by all the forces, and is given by the expression

$$\Delta K = \sum_{i} W_{i}. \tag{6}$$

Problems


A block of mass M=100 kg slides on a frictional incline plane under gravity. The incline makes an angle $\theta=30^{\circ}$ with the horizontal. The coefficient of kinetic friction between the mass and the surface of the incline is $\mu_k=0.25$. The mass starts from the highest point on the incline plane and reaches the lowest point on the plane. The free body force diagram is provided to you.

- 1. Displacement vector:
- (a) If the base of the incline plane measures 5 meters, what is the magnitude of the displacement of the block.


$$d = |\vec{\mathbf{d}}| = \tag{7}$$

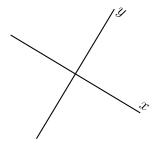
(b) Show the displacement vector $\vec{\mathbf{d}}$ on the graph.

2. Work done by the normal force $\vec{\mathbf{N}}$:

(a) Show the normal force $\vec{\mathbf{N}}$ and the displacement $\vec{\mathbf{d}}$ on the graph.

(b) What is the angle between the Normal force $\vec{\bf N}$ and the displacement vector $\vec{\bf d}?$

$$\theta_N = \tag{8}$$


(c) Calculate the work done by the Normal force on the mass.

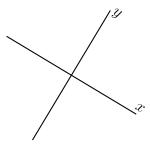
$$W_N = |\vec{\mathbf{N}}| d\cos\theta_N \tag{9}$$

= (10)

3. Work done by gravity $m\vec{\mathbf{g}}$:

(a) Show the force $m\vec{\mathbf{g}}$ and the displacement $\vec{\mathbf{d}}$ on the graph.

(b) What is the angle between the force $m\vec{\mathbf{g}}$ and the displacement vector $\vec{\mathbf{d}}$?


$$\theta_{mg} = \tag{11}$$

(c) Calculate the work done by the force $m\vec{\mathbf{g}}$ on the mass.

$$W_{mg} = \tag{12}$$

4. Work done by the frictional force $\vec{\mathbf{F}}_f$:

(a) Show the frictional force $\vec{\mathbf{F}}_f$ and the displacement $\vec{\mathbf{d}}$ on the graph.

(b) What is the angle between the frictional force $\vec{\mathbf{F}}_f$ and the displacement vector $\vec{\mathbf{d}}$?

$$\theta_f = \tag{13}$$

(c) Calculate the work done by the frictional force on the mass. (Hint: $|\vec{\mathbf{F}}_f| = \mu_k |\vec{\mathbf{N}}| = \mu_k mg \cos \theta$)

$$W_f = \tag{14}$$

- (d) What is the work done by static frictional force?
- 5. Total work done by the forces on the mass:

The total work done by the three forces on the mass is equal to the sum of the individual work done.

$$W_{\text{tot}} = W_N + W_{mq} + W_f \tag{15}$$

(a) Determine the total work done by the three forces on the mass.

$$W_{\text{tot}} = \tag{16}$$

- 6. Change in kinetic energy:
- (a) What is the kinetic energy of the mass just before it starts to slide.

$$K_i = \tag{17}$$

(b) The acceleration of the mass is determined by the expression

$$a = g\sin\theta - \mu_k g\cos\theta. \tag{18}$$

Evaluate a.

(c) Determine the velocity of the mass just before it reaches the ground. (Hint: $v_f^2-v_i^2=2ad.$)

$$v_f = \tag{19}$$

(d) Determine the kinetic energy of the block just before it reaches the ground.

$$K_f = \tag{20}$$

(e) Determine the change in the kinetic energy of the mass.

$$\Delta K = \tag{21}$$

- 7. Total work done by the forces on the mass equals the change in kinetic energy of the mass:
- (a) Verify that the total work done by the forces on the mass equals the change in the kinetic energy of the mass.

$$W_{\text{tot}} = \tag{22}$$

$$\Delta K = \tag{23}$$