Physics 2414, Spring 2005 Group Exercise 2, Feb 3, 2005

Name 1:	OUID 1:
Name 2:	OUID 2:
Name 2: Name 3: Name 4:	OUID 3:
Name 4:	OUID 4:
Section Number:	

Frictional Force

Notation

 $\vec{\mathbf{F}}_f$ - Frictional force (static or kinetic).

 $\vec{\mathbf{F}}_s$ - Static frictional force.

 $\vec{\mathbf{F}}_k$ - Kinetic frictional force.

Description

A tank (of mass 10 kg with water of mass 90 kg) open to the sunlight (so that the water evaporates) is attached to a mass $m_0 = 50$ kg using a massless frictionless pulley as shown in figure 1. The surface on which the tank rests has coefficient of static friction $\mu_s = 0.8$, and coefficient of kinetic friction $\mu_k = 0.5$.

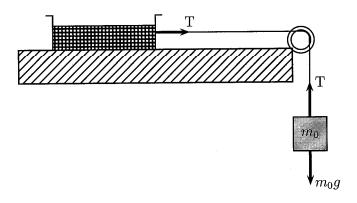
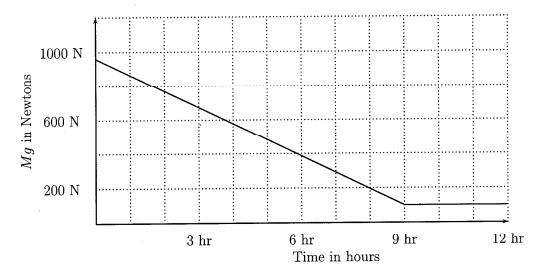
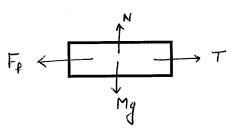
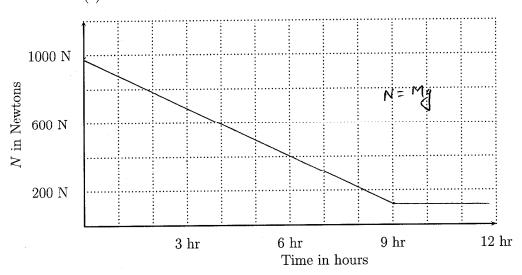



Figure 1: Diagram showing the water#tank being pulled by mass m_0 .


Due to evaporation, the weight (=Mg) of the tank+water varies as shown in the plot 1.

Plot 1: Mg verses time

Problems


- 1. Normal force:
- (a) Draw the free body diagram for the system consisting of the tank+water.

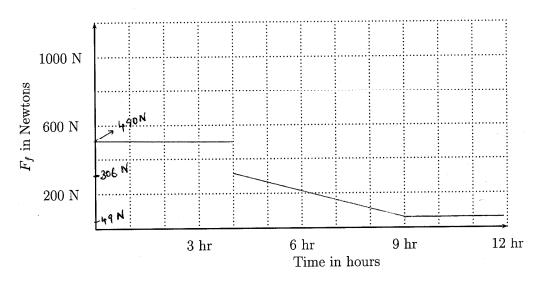
(b) Write the expression for the normal force on the tank+water system.

$$N = Mg$$

(c) Plot the normal force as a function of time in plot 2.

Plot 2: N verses time

2. Friction:


(a) Write the force equation for the tank+water in the horizontal direction.

(b) At what time does the tank start to move? (Hint: $T = m_0 g - 490$ N before the tank starts moving; the acceleration of the tank is zero before it starts to move; and $F_f = \mu_s N$ instantly before the tank starts to move.)

Using
$$D(a)$$
, $a_{tack}=0$, $F_p=\mu_sN$ we have
$$T-\mu_sN=0$$

$$N=\frac{T}{\mu_s}=\frac{490}{0.8}=612.5 N$$
Using plot 2, we conclude that time N 4 hrs.

(c) Plot the frictional force as a function of time in plot 3. (Hint: $F_s \leq \mu_s N$ and $F_k + \mu_k N$.)

Plot 3: F_f verses time

(d) What can you tell about the acceleration of the tank after it starts to move? Does the acceleration of the tank attain a constant value after all the water in the tank evaporates? Give a qualitative answer.