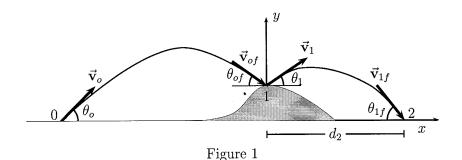
Physics 2414, Spring 2005 Group Exercise 4, Feb 24, 2005


Name 1:	OUID 1:
Name 2:	OUID 2:
Name 3: Qolub	OUID 3:Xol
Name 4:	OUID 4:

Section Number: ____

Kinematics

Notation

 a_x is the component of the vector $\vec{\mathbf{a}}$ along the x direction. a_y is the component of the vector $\vec{\mathbf{a}}$ along the y direction.

Problems

Gimp the golfer hits a ball at point '0' in x direction with an initial speed v_o at an angle θ_o with respect to the horizontal. The ball lands at point '1' on a hill 7.6 meters above the point '0'. The ball lands with a speed $v_{of} = 49$ $^m/s$ at an angle of 31 to the horizontal.

1. Swinging up the hill:

(a) The equations governing the motion of the ball in the uphill swing are

$$(ia) - v_x = v_{ox} v_y = v_{oy} - gt (1)$$

$$(2a) - x_x = v_{ox}t y = v_{oy}t - \frac{1}{2}gt^2 (2)$$

$$v_y^2 = v_{oy}^2 - 2gy (3)$$

(b) Find the x-component and y-component of the velocity $\vec{\mathbf{v}}_{of}$ with which the ball hits the hill

$$v_{ofx} = + V_{of} los lof = 49 los 31 = 42.1 \text{ m/s}$$

$$v_{ofy} = - V_{of} 81.00f = -4981.31 = -25.5 \text{ m/s}$$
(5)

(c) Before calculating the initial velocity $\vec{\mathbf{v}}_o$; why is it wrong to conclude that the magnitude of the initial velocity $\vec{\mathbf{v}}_o$ is equal to the magnitude of the final velocity $\vec{\mathbf{v}}_{of}$. Give a qualitative argument.

(d) Determine the x-component of the initial velocity $\vec{\mathbf{v}}_o$.

$$v_{ox} = \bigvee_{c \neq z} (w_{c} \otimes y_{c})$$

$$= 42.1 \text{ } (w_{c} \otimes y_{c})$$
(e) Determine the y-component of the initial velocity \vec{v}_{o} .

$$v_{oy} = \sqrt{\frac{2}{\sqrt{1 + 2}}} \frac{(wig)}{(wig)}$$

$$= \sqrt{(-25.5)^2 + 2 \times 9.8 \times 7.6} = + 28.3 \%$$
(f) What was the initial speed (magnitude of $\vec{\mathbf{v}}_o$) of the ball?

$$|\vec{v}_o| - \sqrt{V_{0x}^2 + V_{0y}^2} = \sqrt{(42.1)^2 + (28.3)^2} = 50.7 \text{ m/s}$$
(8)

(g) At what direction with the horizontal (θ_o) was the ball hit?

$$\theta_{o} = \tan^{-1} \left(\frac{V_{cy}}{V_{cx}} \right) = \tan^{-1} \left(\frac{28.3}{42.1} \right) = 34^{\circ}$$

$$\theta_{o} = 34^{\circ} \text{ with positive } x-axis$$
(9)

2. Swinging down the hill:

Gimp hits the ball again, again in the x direction. He hits the ball from point '1' with a speed $v_1 = 40$ $^m/s$ at an angle $\theta_1 = 30$ ° with the horizontal. The ball lands at point '2' with a speed $v_{1f} = 42$ $^m/s$ at an angle $\theta_{1f} = 34$ ° with the horizontal.

(a) Write the equations governing the motion of the ball in the downhill swing.

(b) Find the x-component and y-component of the velocity $\vec{\mathbf{v}}_1$ with which the ball lands

$$v_{1x} = V_i \cos \theta_i = 40 \text{ Cm 30} = 34.8 \text{ m/s}$$
 (10)

$$v_{1y} = v_i Sin \theta_i = 40 Sin 30 = 20 \text{ m/s}$$
 (11)

(c) Find the x-component and y-component of the velocity $\vec{\mathbf{v}}_{1f}$ with which the ball lands

$$v_{1fx} = V_{if} \cos \theta_{if} = 42 \cos 34 = 34.8 \%$$
 (12)

$$v_{1fx} = V_{if} \text{ (a)} v_{if} = -428i \cdot 34 = -23 \cdot 4 \%$$

$$v_{1fy} = -V_{if} 8i \cdot \theta_{if} = -428i \cdot 34 = -23 \cdot 4 \%$$
(13)

(d) How much time 't' did the ball take to reach point '2' from point '1'. (Hint: Use the equation $v_{\mathcal{H}}=v_{1\mathcal{H}}-gt.$)

$$t = \frac{V_{ij} - V_{ij}}{3} = \frac{20 - (-23.4)}{9.8} = 4.4 \text{ sec.}$$
(14)

(e) What is the distance d_2 between the point '1' and point '2'.

$$d_{2} = V_{1x} t \quad (wig \quad Gb)$$

$$= 34.8 \times 4.4$$

$$= 153 \text{ meter}$$