
Homework No. 07 (Fall 2013)

PHYS 320: Electricity and Magnetism I

Due date: Monday, 2013 Dec 2, 4.30pm

1. Find the solution to the differential equation

[
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⊥

]

g(z, z′; k⊥) = δ(z − z′) (1)

when

ε(z) =

{

ε2 z < a,

ε1 a < z.
(2)

for the case a < z′. Look for solution that is zero at z = ±∞.

2. Consider a semi-infinite dielectric slab described by

ε(z) =

{

ε2 z < a,

ε1 > ε2 a < z.
(3)

A point charge q described by
ρ(r) = qδ(3)(r− r′) (4)

is embedded at position r′ (with a < z′) on one side of the interface.

(a) Show that the electric potential is given in terms of the Green’s function by

φ(r) = qG(r, r′), (5)

where the Green’s function satisfies

∇ · ε(z)∇G(r, r′) = δ(3)(r− r′). (6)

Using the solution for the reduced Green’s function g(z, z′; k⊥) find the expression
for the electric potential to be given by
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(7)

where r′im = r′ − 2(z′ − a)ẑ.
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(b) Using E(r) = −∇φ(r) find the expression for the electric field as

E(r) =
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, a < z,
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(8)

(c) Draw the electric field lines for this configuration (ε2 < ε1).

(d) Investigate the continuity in the components of electric field at the interface by
evaluating the following:

Ex(x, y, a+ δ)− Ex(x, y, a− δ) = ?, (9)

Ey(x, y, a+ δ)− Ey(x, y, a− δ) = ?, (10)

ε1Ez(x, y, a+ δ)− ε2Ez(x, y, a− δ) = ?. (11)
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