

Exam No. 01 (Fall 2013)

PHYS 520A: Electromagnetic Theory I

Date: 2013 Sep 19

1. Show that

$$\nabla(\hat{\mathbf{r}} \cdot \mathbf{a}) = -\frac{1}{r} \,\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{a}) \tag{1}$$

for a uniform (homogeneous in space) vector a.

- 2. (Schwinger et al., problem 7, chapter 1.) A charge q moves in the vacuum under the influence of uniform fields E and B. Assume that $E \cdot B = 0$ and $v \cdot B = 0$.
 - (a) At what velocity does the charge move without acceleration?
 - (b) What is the speed when $\varepsilon_0 E^2 = \mu_0 H^2$?
- 3. A plane wave is incident, in vacuum, on a perfectly absorbing flat screen.
 - (a) Without compromising generality we can choose the screen at $z = z_a$. Starting with the statement of conservation of linear momentum,

$$\frac{\partial \mathbf{G}}{\partial t} + \nabla \cdot \mathbf{T} + \mathbf{f} = 0, \tag{2}$$

integrate on the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Interpret the integral of force density \mathbf{f} as the total force, \mathbf{F} , on the plate. Further, note that the integral of momentum density \mathbf{G} goes to zero for infinitely small δ . Thus, obtain

$$\mathbf{F} = -\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{z_a - \delta}^{z_a + \delta} dz \, \nabla \cdot \mathbf{T}. \tag{3}$$

(b) Use divergence theorem to conclude

$$\mathbf{F} = -\oint d\mathbf{a} \cdot \mathbf{T},\tag{4}$$

where the closed surface encloses the volume between $z = z_a - \delta$ and $z = z_a + \delta$ for infinitely small $\delta > 0$. Choose the plane wave to be incident on the side $z = z_b - \delta$ of the plate, and assuming E = 0 and B = 0 on the side $z = z_b + \delta$, conclude that

$$\frac{\mathbf{F}}{A} = \hat{\mathbf{z}} \cdot \mathbf{T}|_{z=z_a-\delta},\tag{5}$$

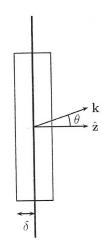


Figure 1: A plane wave with direction of propagation ${\bf k}$ incident on a screen.

where A is the total area of the screen. The electromagnetic stress tensor T in these expressions is given by

 $T = 1U - (DE + BH), \tag{6}$

where U is the electromagnetic energy density,

$$U = \frac{1}{2}(\mathbf{D} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{H}). \tag{7}$$

(c) For the particular case when the plane wave is incident normally on the screen ($\theta = 0$ in Fig. 1) calculate the force per unit area in the direction normal to the screen by evaluating

 $\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A}.\tag{8}$

Express the answer in terms of U using the properties of a plane wave: $\mathbf{k} \cdot \mathbf{E} = 0$, $\mathbf{k} \cdot \mathbf{B} = 0$, $\mathbf{E} \cdot \mathbf{B} = 0$, $|\mathbf{E}| = c|\mathbf{B}|$, and $kc = \omega$.

(d) Consider the case when the plane wave is incident obliquely on the screen such that $\hat{\mathbf{k}} \cdot \hat{\mathbf{z}} = \cos \theta$ and $\mathbf{H} \cdot \hat{\mathbf{z}} = 0$. Calculate the force per unit area in the direction normal to the screen by evaluating

 $\frac{\mathbf{F} \cdot \hat{\mathbf{z}}}{A},\tag{9}$

and the force per unit area tangential to the screen by evaluating

$$\frac{\mathbf{F} \cdot \hat{\mathbf{x}}}{A}.\tag{10}$$

Express the answer in terms of U and θ using the properties of a plane wave.

$$\overrightarrow{\nabla} \left(\stackrel{\circ}{\epsilon} . \overrightarrow{a} \right) = \overrightarrow{\nabla} \left[\stackrel{\circ}{\epsilon} (\stackrel{\circ}{\delta} . \stackrel{\circ}{a}) \right] + \overrightarrow{\nabla} \left(\stackrel{\circ}{\nabla} \stackrel{\circ}{\delta} . \stackrel{\circ}{a} \right) + \overrightarrow{\nabla} \left(\stackrel{\circ}{\nabla} \stackrel{\circ}{\delta} . \stackrel{\circ}{a} \right) + \overrightarrow{\nabla} \left(\stackrel{\circ}{\nabla} . \stackrel{\circ}{a} \right) + \overrightarrow{\nabla} \left(\stackrel{\circ}{\nabla} . \stackrel{\circ}{a} \right) + \overrightarrow{\nabla} \left(\stackrel{\circ}{\delta} . \stackrel{\circ}{a} \right) + \overrightarrow{\nabla}$$

$$\widehat{F} = q \left[\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B} \right]$$

(a)
$$\vec{a} = 0 \implies \vec{F} = 0$$

$$\vec{E} = -\vec{\nabla} \times \vec{B} \cdot (\vec{x} \cdot \vec{B} = 0).$$

$$|\vec{E}| = \vec{V} \cdot |\vec{B}|$$

(b)
$$V^{2} = \frac{E^{2}}{B^{2}} = \frac{E^{2}}{\mu_{o}^{2} H^{2}}$$

$$= \frac{E^{2}}{\mu_{o} \epsilon_{o} E^{2}}$$

$$= e^{2}$$

$$= e^{2}$$

$$\begin{array}{c}
\hat{x} \\
\hat$$

(a)
$$\partial \vec{q} + \vec{\nabla} \cdot \vec{r} + \vec{p} = 0$$

$$\int \frac{\partial \vec{G}}{\partial t} + \vec{\nabla} \cdot \vec{T} + \int \frac{\partial x}{\partial y} \int \frac{\partial z}{\partial z} \cdot \vec{F} + \int \frac{\partial x}{\partial y} \int \frac{\partial z}{\partial z} \cdot \vec{F} = 0$$

$$\int \frac{\partial z}{\partial t} \frac{\partial z}{\partial t} \cdot \vec{F} \cdot \vec$$

$$z_{a-8}$$
 \vec{F}
 \vec{G}
 \vec{G} = 0

$$\vec{F} = -\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{-\infty} dz$$

(P)

divergence theorem we have.
$$\vec{F} = - \int d\vec{a} \cdot \vec{T}$$

$$\Rightarrow 1 \qquad A(\hat{z}) \cdot \vec{T} |_{z=z_a}$$

$$= - \int d\vec{a} \cdot \vec{T}$$

$$= - A(-\hat{z}) \cdot \vec{T}|_{z=z_a-\delta} - A(\hat{z}) \cdot \vec{T}|_{z=z_a+\delta}$$

$$= - A(-\hat{z}) \cdot \vec{T}|_{z=z_a-\delta} - A(\hat{z}) \cdot \vec{T}|_{z=z_a+\delta}$$

Thu,
$$\overrightarrow{F} = \widehat{z} \cdot \overrightarrow{T} |_{z=z_a-\delta}$$
.

 $E^2 = c^2 B^2$ = $\frac{\mu_0}{2} H^2$.

(c)
$$\overrightarrow{F} \cdot \overrightarrow{A} = \overrightarrow{2} \cdot \overrightarrow{T} \cdot \overrightarrow{2}$$

$$= U - (\overrightarrow{2} \cdot \overrightarrow{D})(\overrightarrow{2} \cdot \overrightarrow{E}) - (\overrightarrow{2} \cdot \overrightarrow{B})(\overrightarrow{2} \cdot \overrightarrow{H})$$

$$= U - (\overrightarrow{k} \cdot \overrightarrow{D})(\overrightarrow{k} \cdot \overrightarrow{E}) - (\overrightarrow{k} \cdot \overrightarrow{B})(\overrightarrow{k} \cdot \overrightarrow{H})$$

$$= U - (\overrightarrow{k} \cdot \overrightarrow{D})(\overrightarrow{k} \cdot \overrightarrow{E}) - (\overrightarrow{k} \cdot \overrightarrow{B})(\overrightarrow{k} \cdot \overrightarrow{H})$$

$$= U - (\overrightarrow{k} \cdot \overrightarrow{D})(\overrightarrow{k} \cdot \overrightarrow{E}) - (\overrightarrow{k} \cdot \overrightarrow{B})(\overrightarrow{k} \cdot \overrightarrow{H})$$

(a)
$$\vec{F} \cdot \hat{z} = \hat{z} \cdot \hat{T} \cdot \hat{z}$$

= $U - (\hat{z} \cdot \vec{D})(\hat{z} \cdot \vec{E}) - (\hat{z} \cdot \vec{B})(\hat{z} \cdot \vec{H})$

$$\frac{\vec{F} \cdot \hat{z}}{A} = U - (-\epsilon_0 E \sin \theta)(-E \sin \theta) - 0$$

$$U = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \mu_0 H^2$$

$$= C_0 E^2$$

$$U = \frac{1}{2} \epsilon_0 E^2 + \frac{1}{2} \mu_0 H^2$$

$$= \epsilon_0 E^2$$

$$\overrightarrow{F} \cdot \widehat{x} = \widehat{z} \cdot \overrightarrow{T} \cdot \widehat{x}$$

$$= (\widehat{z} \cdot \widehat{x})U - (\widehat{z} \cdot \widehat{D})(\widehat{x} \cdot \widehat{E}) - (\widehat{z} \cdot \widehat{B})(\widehat{z} \cdot \widehat{H})$$

$$= (\widehat{z} \cdot \widehat{x})U - (-e_0 E 8in \theta)(E Cm \theta) - 0$$

$$= U 8in \theta Cm \theta$$