

Exam No. 02 (Fall 2013)

PHYS 520A: Electromagnetic Theory I

Date: 2013 Oct 24

1. Show that the effective charge density, $\rho_{\rm eff}$, and the effective current density, $\mathbf{j}_{\rm eff}$,

$$\rho_{\text{eff}} = -\nabla \cdot \mathbf{P},\tag{1}$$

$$\mathbf{j}_{\text{eff}} = \frac{\partial}{\partial t} \mathbf{P} + \mathbf{\nabla} \times \mathbf{M},\tag{2}$$

satisfy the equation of charge conservation

$$\frac{\partial}{\partial t}\rho_{\text{eff}} + \nabla \cdot \mathbf{j}_{\text{eff}} = 0. \tag{3}$$

2. Consider the charge density

$$\rho(\mathbf{r}) = -\mathbf{d} \cdot \nabla \delta^{(3)}(\mathbf{r}). \tag{4}$$

(a) Find the total charge of the charge density by evaluating

$$\int d^3r \, \rho(\mathbf{r}). \tag{5}$$

(b) Find the dipole moment of the charge density by evaluating

$$\int d^3 r \, \mathbf{r} \, \rho(\mathbf{r}). \tag{6}$$

3. The response to an electric field in the Drude model is described by the susceptibility function

$$\chi(\omega) = \frac{\omega_p^2}{\omega_0^2 - i\omega\gamma}. (7)$$

Plot $[Re\chi(\omega)]$ as a function of ω .

4. Consider a circular loop of wire carrying current I whose magnetic moment is given by $\mu = IA\hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ points perpendicular to the plane containing the loop (satisfying the right hand sense) and A is the area of the loop. Consider the case $\hat{\mathbf{n}} = \hat{\mathbf{x}}$. What is the magnitude and direction of the torque experienced by this loop in the presence of a uniform magnetic field $\mathbf{B} = B\hat{\mathbf{y}}$. Describe the resultant motion of the loop. (Hint: The torque experienced by a magnetic moment μ in a magnetic field \mathbf{B} is $\tau = \mu \times \mathbf{B}$.)

5. A simple model for susceptibility is

$$\chi(\omega) = \frac{\omega_1}{\omega_0 - \omega} + i \pi \omega_1 \delta(\omega - \omega_0), \tag{8}$$

where ω_0 and ω_1 represent physical parameters of a material.

(a) Note that

$$[\operatorname{Re}\chi(\omega)] = \frac{\omega_1}{\omega_0 - \omega}$$
 and $[\operatorname{Im}\chi(\omega)] = \pi\omega_1\delta(\omega - \omega_0).$ (9)

- (b) Plot $[\text{Re}\chi(\omega)]$ and $[\text{Im}\chi(\omega)]$ with respect to ω .
- (c) Evaluate the right hand side of the Kramers-Kronig relation

$$[\operatorname{Re}\chi(\omega)] = \lim_{\delta \to 0+} \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} [\operatorname{Im}\chi(\omega')] \, 2\operatorname{Re}\left\{\frac{1}{\omega' - (\omega + i\delta)}\right\} \tag{10}$$

for this simple model.

Prob 1, Exam-2

$$\frac{\partial}{\partial t} \frac{\partial}{\partial t} + \vec{\nabla} \cdot \vec{J} = \frac{\partial}{\partial t} \left(-\vec{\nabla} \cdot \vec{P} \right) + \vec{\nabla} \cdot \left[\frac{\partial}{\partial t} \vec{P} + \vec{\nabla} \times \vec{M} \right]$$

Prob 2, Exam-2

(a)
$$\int d^3s \ 9(\vec{s}) = -\int d^3s \ \vec{d} \cdot \vec{\nabla} \ S^{(3)}(\vec{r})$$

$$= -\vec{d} \cdot \int d^3s \ \vec{\nabla} \ S^{(3)}(\vec{s})$$

(b)
$$\int_{0}^{2} \delta = \frac{1}{2} \left(\frac{1}{2} \right) = -\int_{0}^{2} \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$$

Prob 3, Exam-2

$$\chi(\omega) = \frac{\omega_p^2}{\omega_0^2 - i\omega^{\frac{1}{2}}}$$

$$[Re\ \chi(\omega)] = \frac{\omega_P^2 \ \omega_o^2}{\omega_o^4 + \omega^2 \ v^2}$$

Lorest 2 distribution.

Prob 4,
$$E \times am - 2$$

$$\vec{\mu} = IA \hat{\chi}$$

$$\vec{B} = B \hat{\chi}$$

$$\vec{r} = \vec{B} \hat{y}$$
 $\vec{r} = \vec{\mu} \times \vec{b} = IAB \hat{x} \times \hat{y}$
 $\vec{r} = \vec{\mu} \times \vec{b} = IAB \hat{x} \times \hat{y}$

$$\chi(\omega) = \frac{\omega_1}{\omega_0 - \omega} + i \eta \omega, \delta(\omega - \omega_0)$$

(a)
$$\left[\text{Re } X(\omega) \right] = \frac{\omega_1}{\omega_0 - \omega}$$

(P)

Im X

Selta functi

wo w

(c) Lt
$$\int \frac{d\omega'}{\omega'} \left[\operatorname{Im} \chi(\omega') \right] \operatorname{Re} \frac{2}{\omega' - (\omega + i\delta)}$$

= $\int \frac{d\omega'}{\omega'} \operatorname{Im} \chi(\omega) \operatorname{Re} \frac{2}{\omega' - (\omega + i\delta)}$

$$=\frac{\omega_1}{\omega_0-\omega}$$