Midterm Exam No. 02 (Spring 2014)

PHYS 520B: Electromagnetic Theory
Date: 2014 Apr 7

1. (20 points.) The magnetic field at a distance R from a wire of infinite extent carrying
a steady current I is given by
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where the direction of q?) is given by the right-hand rule. Find the magnetic field at point
o in Fig. 1 in terms of distances a and b and current I.

Figure 1: Problem 1

2. (20 points.) From Maxwell’s equations, including magnetic charges and currents,
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derive the inhomogeneous wave equation
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3. (20 points.) Using the identity
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where the sum on r runs over the roots a, of the equation F'(z) = 0, evaluate
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4. (20 points.) The 4-dimensional Euclidean Green’s function satisfies
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Evaluate the integral

/_OO dry Gp(r,xy). 9)

[e.e]

From the answer what can you comment about the physical interpretation of ffooo dry Gg?

5. (20 points.) Consider a point electric dipole moment d moving with velocity v = vz.
For the case of time independent d and v, and when the dipole moves close to speed of
light, 3 — 1, we can write the leading order contributions in (1 — 4?) for the electric and
magnetic fields as
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where p = zi+ yj and ¢ = —yi+ zj. These fields are confined on a plane perpendicular
to direction of motion. Determine the electromagnetic momentum density flux for the
particular configuration d = dp by calculating
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