Final Exam (Spring 2014)

PHYS 520B: Electromagnetic Theory
Date: 2014 May 6

1. (20 points.) The spherical harmonics

T Ja+m) @\ d T (cos?0 — 1)
Yim(0,0) = A (1 —m)! (sin@) (dcos@) B 1)

satisfy the orthonormality condition
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Using the relation between the Legendre’s polynomial P,(z) and the spherical harmonics,
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derive the orthonormality condition satisfied by Legendre’s polynomials.

2. (20 points.) Evalauate the integral
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as a sum.
Hint: Use the identity
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where the sum on 7 runs over the roots a, of the equation F(x) = 0.

3. (20 points.) Neglecting quadrupole and higher moments, the angular distribution of
power radiated by a non-relativistic particle is given by
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Calculate the contribution to the total power radiated P(t) from the third term, that
represents interference between d and p, by integrating over all solid angles.



4. (20 points.) An electron of charge e and mass m moves in a circular orbit under the
Coulomb forces produced by a proton. Suppose, as it radiates, the electron continues to
move on a circle.

(a) Determine the acceleration a of the electron using Newton’s laws of motion.

(b) Show that the energy of the system is given by
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(c¢) Using the Larmor formula
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construct a differential equation for E.
(d) Show that
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Thus, construct a differential equation for r.

(e) In a finite time the electron reaches the center. Calculate how long it takes for the
electron to hit the proton if it starts from an initial radius of rinitia = 10719 m.

(This instability was one of the reasons for the discovery of quantum mechanics.)

5. (20 points.) Consider the motion of three non-relativisitic particles (speed v; small
compared to speed of light ¢, v; < ¢,) of identical charges ¢; = ¢ and identical masses
m; = m, ¢ = 1,2,3. The radiated power by the individual particles are given by the

expressions
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where a;(t.) is the acceleration of the i-th particle at the time of emission
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Let the total contribution to radiated power from the three particles together be denoted

by the subscript (1 4 2 + 3). Consider the motion of three particles moving on a circle

with same uniform speed while remaining at the vertices of a equilateral triangle at each

moment. Find the total radiated power Pj1215)(f). (Hint: The centripetal acceleration
is in the radial direction.)



