
Homework No. 02 (Spring 2014)

PHYS 520B: Electromagnetic Theory

Due date: Friday, 2014 Feb 7, 4.30pm

1. The generating function for the spherical harmonics, Ylm(θ, φ), is
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where the left hand side is expressed in terms of

r = r(sin θ cosφ, sin θ sinφ, cos θ), (2)
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and the right hand side consists of
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and

Ylm(θ, φ) = eimφ
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Show that
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is unchanged by the substitution: y+ ↔ y−, θ → −θ, φ→ −φ. Thus, show that

Ylm(θ, φ) = Yl,−m(−θ,−φ). (7)

2. Legendre polynomials of order l is given by (for |t| < 1)

Pl(t) =
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(a) Write down the explicit forms of the Legendre polynomials Pl(t) for l = 0, 1, 2, 3, by
completing the l differentiations in Eq. (8).

(b) Show that the spherical harmonics for m = 0 involves the Legendre polynomials,

Yl0(θ, φ) =
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Pl(cos θ). (9)
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(c) Using the orthonormality condition for the spherical harmonics
∫

dΩY ∗

lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ (10)

recognize the orthogonality statement for Legendre polynomials,
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Use
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to check this explicitly for l, l′ = 0, 1, 2.

3. An example of a null-vector is

a = (−i cosα,−i sinα, 1). (13)

(a) Identify the corresponding y± in Eq. (3) to show that, now, ψlm in Eq. (1) is
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(b) Then, integrate Eq. (1) to derive an integral representation for spherical harmonics,
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(c) By setting m = 0 derive the corresponding integral representation for Legendre
polynomial Pl(cos θ):
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(d) Use the integral representation for J0(t),
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to show that

Pl(cos θ) =

(

cos θ − sin θ
d

dt

)l

J0(t)

∣

∣

∣

∣

t=0

. (18)

Verify this for l = 0, 1, 2.

(e) Now let θ = x/l and, for fixed x, consider the limit l → ∞, to obtain

lim
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)

= J0(x), (19)

which is often used in the approximate form

θ ≪ 1, l ≫ 1 : Pl(cos θ) ∼ J0(lθ). (20)

(f) For what geometrical reason does one expect an asymptotic connection between
spherical and cylindrical coordinate functions?
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