Homework No. 06 (Spring 2014)

PHYS 520B: Electromagnetic Theory

Due date: Thursday, 2014 Apr 24, 4.30pm

1. Show that

$$\boldsymbol{\nabla}_{r}(\hat{\mathbf{r}}\cdot\mathbf{r}') = -\frac{1}{r}\hat{\mathbf{r}}\times(\hat{\mathbf{r}}\times\mathbf{r}'). \tag{1}$$

- 2. A particle, of charge q and mass m, always moves with speed $v \ll c$.
 - (a) Consider the case when it oscillates on the x-axis with frequency ω_0 and amplitude A given by

$$\mathbf{r}_1(t) = \hat{\mathbf{x}} A \cos \omega_0 t. \tag{2}$$

Obtain expressions for the radiated electric field $\mathbf{E}(\mathbf{r}, t)$, radiated magnetic field $\mathbf{B}(\mathbf{r}, t)$, angular distribution of the radiated power $dP/d\Omega$, and the total power radiated P.

(b) Next, consider the case when the particle moves on a circle described by

$$\mathbf{r}_2(t) = \hat{\mathbf{x}}A\cos\omega_0 t + \hat{\mathbf{y}}A\sin\omega_0 t. \tag{3}$$

Obtain expressions for the radiated electric field $\mathbf{E}(\mathbf{r}, t)$, radiated magnetic field $\mathbf{B}(\mathbf{r}, t)$, angular distribution of the radiated power $dP/d\Omega$, and the total power radiated P.

- (c) Show that the radiated electric and magnetic field is additive, that is, it is the sum of two oscillators.
- (d) Show that the radiated power is not additive, but exhibits interference effects. Identify the interference term for the circular motion.
- (e) Find directions $\hat{\mathbf{r}}$ for which the interference term goes to zero.
- 3. (Schwinger et al., problem 32.1.) A particle, of charge q and mass m, moves with speed $v \ll c$, in a uniform magnetic field **B**. Suppose the motion is confined to the plane perpendicular to **B**. Calculate the power radiated P in terms of B and v, and show that

$$P = -\frac{dE}{dt} = \gamma E,\tag{4}$$

where $E = mv^2/2$ is the energy of the particle. Find γ . Since then

$$E(t) = E(0) e^{-\gamma t}, \tag{5}$$

 $1/\gamma$ is the mean lifetime of the motion. For an electron, find $1/\gamma$ in seconds for a magnetic field of 10^4 Gauss.

4. (Schwinger et al., problem 32.2.) A nonrelativistic particle of charge q and mass m moves in a Hooke's law potential (a linear oscillator) with natural frequency ω_0 . Find P, the power radiated. Recall that for such motion, the time-averaged kinetic and potential energy satisfy

$$\bar{T} = \bar{V} = \frac{1}{2}E.$$
(6)

Show then that the power radiated, averaged over one cycle is

$$P = -\frac{dE}{dt} = \gamma E,\tag{7}$$

and find γ . Compute $1/\gamma$ in seconds, for electron, when ω_0 is 10^{15} sec^{-1} (a characteristic atomic frequency, corresponding to visible light).