Homework No. 03 (2014 Fall)

PHYS 320: Electricity and Magnetism I

Due date: Monday, 2014 Sep 15, 4:00 PM

1. (50 points.) The Maxwell equations, in SI units, are

$$\nabla \cdot \mathbf{D} = \rho,\tag{1}$$

$$\nabla \cdot \mathbf{B} = 0, \tag{2}$$

$$-\nabla \times \mathbf{E} - \frac{\partial}{\partial t} \mathbf{B} = 0, \tag{3}$$

$$\nabla \times \mathbf{H} - \frac{\partial}{\partial t} \mathbf{D} = \mathbf{J},\tag{4}$$

where

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P},\tag{5}$$

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}. \tag{6}$$

The Lorentz force, in SI units, is

$$\mathbf{F} = q \left[\mathbf{E} + \mathbf{v} \times \mathbf{B} \right]. \tag{7}$$

- (a) Starting from the Maxwell equations and Lorentz force in SI units, derive the corresponding equations in Gaussian units.
- (b) Starting from the Maxwell equations and Lorentz force in SI units, derive the corresponding equations in Lorentz-Heaviside units.
- 2. (20 points.) In Gaussian units the power radiated by an accelerated charged particle of charge e is given by the Larmor formula,

$$P = \frac{2e^2}{3c^3}a^2,\tag{8}$$

where a is the acceleration of the charged particle. Write down the Larmor formula in SI units, and in Lorentz-Heaviside units.

3. (30 points.) The fine-structure constant, in Gaussian units,

$$\alpha = \frac{e^2}{\hbar c},\tag{9}$$

is the parameter that characterizes the strength of the electromagnetic interaction.

- (a) Write down the corresponding expression for fine-structure constant in SI units, and in Lorentz-Heaviside units.
- (b) Verify that the fine-structure constant is a dimensionless quantity. Show that the numerical value of the fine-structure constant is independent of the system of units.
- (c) Evaluate the numerical value for the reciprocal of the fine-structure constant, α^{-1} . (A periodic table based on quantum electrodynamics breaks down for atomic numbers greater than α^{-1} .)