
Homework No. 03 (Spring 2015)

PHYS 520B: Electromagnetic Theory

Due date: Monday, 2015 Feb 20, 4.30pm

1. (20 points.) The solution to the Maxwell equations for the case of magnetostatics was
found in terms of the vector potential A to be

A(r) =
µ0

4π

∫

d3r′
J(r′)

|r− r′|3
. (1)

(a) Verify that the above solution satisfies the Coulomb gauge condition, that is, it
satisfies

∇ ·A = 0. (2)

(b) Further, verify that the magnetic field is the curl of the vector potential and can be
expressed in the form

B(r) = ∇×A(r) =
µ0

4π

∫

d3r′J(r′)×
r− r′

|r− r′|3
. (3)

2. (20 points.) The solution to the Maxwell equations for the case of magnetostatics was
found to be

B(r) =
µ0

4π

∫

d3r′J(r′)×
r− r′

|r− r′|3
. (4)

Verify that the above solution satisfies magnetostatics equations, that is, it satisfies

∇ ·B = 0 (5)

and
∇×B = µ0 J. (6)

3. (50 points.) (Based on Problem 5.8, Griffiths 4th edition.)
The magnetic field at position r = (x, y, z) due to a finite wire segment of length 2L
carrying a steady current I, with the caveat that it is unrealistic (why?), placed on the
z-axis with its end points at (0, 0, L) and (0, 0,−L), is

B(r) = φ̂
µ0I

4π

1
√

x2 + y2

[

z + L
√

x2 + y2 + (z + L)2
−

z − L
√

x2 + y2 + (z − L)2

]

, (7)

where φ̂ = (− sin φ î+ cosφ ĵ) = (−y î + x ĵ)/
√

x2 + y2.
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(a) Show that by taking the limit L → ∞ we obtain the magnetic field near a long
straight wire carrying a steady current I,

B(r) = φ̂
µ0I

2πρ
, (8)

where ρ =
√

x2 + y2 is the perpendicular distance from the wire.

(b) Show that the magnetic field on a line bisecting the wire segment is given by

B(r) = φ̂
µ0I

2πρ

L
√

ρ2 + L2
. (9)

(c) Find the magnetic field at the center of a square loop, which carries a steady current
I. Let 2L be the length of a side, ρ be the distance from center to side, and
R =

√

ρ2 + L2 be the distance from center to a corner. (Caution: Notation differs
from Griffiths.) You should obtain

B =
µ0I

2R

4

π
tan

π

4
. (10)

(d) Show that the magnetic field at the center of a regular n-sided polygon, carrying a
steady current I is

B =
µ0I

2R

n

π
tan

π

n
, (11)

where R is the distance from center to a corner of the polygon.

(e) Show that the magnetic field at the center of a circular loop of radius R,

B =
µ0I

2R
, (12)

is obtained in the limit n → ∞.

4. (40 points.) (Refer Schwinger et al. problem 26.1 and the article in Ref. [1].)
A simple model of a metal describes the electrons in it using Newton’s law,

m
d2x

dt2
+mγ

dx

dt
+mω2

0
x = eE. (13)

Here the first term involves the acceleration of electron, ω0-term binds the electron to the
atoms, while γ-term damps the motion. Conductivity in typical metals is dominated by
the damping term, thus

mγv = eE. (14)

The current density j for (constant) density nf of conduction electrons is

j = nfev. (15)
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In conjunction we have

j =
nfe

2

mγ
E = σE, (16)

where σ is the static conductivity.

In 1935 Fritz London and Heinz London proposed that the current density js in a super-
conductor is described by the acceleration term

m
dv

dt
= eE, (17)

which leads to London’s “acceleration equation”

µ0

djs
dt

= µ0

nfe
2

m
E =

1

λ2

L

E. (18)

In terms of potentials we obtain the London equation

µ0 js +
1

λ2

L

A = ∇χ, (19)

where A is the vector potential and χ allows for a choice of gauge.

(a) Using London’s equation show that a superconductor is characterized by the equa-
tions

µ0

∂js
∂t

=
1

λ2

L

E, (20)

µ0∇× js = −
1

λ2

L

B. (21)

(Hint: Choose the scalar potential φ = −λ2

L∂χ/∂t.)

(b) Show that the magnetic field satisfies the equation
(

∇2 −
1

c2
∂2

∂t2

)

B =
1

λ2

L

B. (22)

(c) For the static case, ∂B/∂t = 0, show that

∇2B =
1

λ2

L

B, (23)

which implies the Meissner effect, that a uniform magnetic field cannot exist inside
a superconductor.

(d) In this static limit and planar geometry, it implies

B = B0 e
−

x

λL , (24)

where λL is called the London penetration depth,

λ2

L =
mε0
nfe2

c2. (25)

Calculate the penetration depth for nf ∼ 6× 1028 /m3 (electron number density for
gold) and show that it is of the order of tens of nanometers.
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