Homework No. 07 (Spring 2015)

PHYS 520B: Electromagnetic Theory
Due date: Friday, 2015 May 1, 4.30pm

1. (40 points.) From Maxwell’s equations, without introducing potentials, show that the
electric and magnetic fields satisfy the inhomogeneous wave equations
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Extend this result to magnetic charges and currents.

2. (80 points.) The 4-dimensional Euclidean Green’s function satisfies
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(a) Show that the solution to this equation can be written as the Fourier transform
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(b) Verify the integral
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(c) Using Eq. @) in Eq. (B]) show that
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(e) Using the integral of Eq. (@) in Eq. (B) and using the integral representation of

Gamma function,
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(d) Show that
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(f) By making the complex replacement
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satisfies the differential equation
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where r = (z1, 9, x3), with the corresponding solution
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(g) Using the o-function representation
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where the two terms here are the retarded and advanced Green’s functions, respec-
tively, up to numerical factors.

(h) Refer problem 31.9 in Schwinger et al. for further discussion on this subject. (Will
not be graded.)

3. (30 points.) Using the identity
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where the sum on r runs over the roots a, of the equation F'(z) = 0, evaluate
d(sinx), d(cosz), and I(tanz). (17)



