Midterm Exam 02 (2016 Spring)

PHYS 203A: College Physics

Date: 2016 Mar 23

(Name)	(Signature)

Instructions

- 1. Seating direction: Please be seated on odd-numbered seats.
- 2. Total time = 50 minutes.
- 3. There are 8 questions in this exam.
- 4. Equation sheet is provided separately.
- 5. To be considered for partial credit you need to show your work in detail and organize it clearly.
- 6. A simple calculator (with trigonometric functions) is allowed.
- 7. Use of mobile phones is strictly prohibited. It should stay out of reach during the exam.

1. (10 points.) Your mass is 95 kg. How much will you weigh on a bathroom scale (designed to measure the Normal force) inside an elevator that is slowing down at $1.0\,\mathrm{m/s^2}$ while moving upward?

2. (10 points.) A block is projected up a frictionless inclined plane with initial speed $v_0 = 3.5 \text{ m/s}$. The angle of incline is $\theta = 20.0^{\circ}$. How much time does it take for the block to return back to the bottom?

3. (10 points.) Three boxes with masses $m_1 = 1.50 \,\mathrm{kg}$, $m_2 = 4.50 \,\mathrm{kg}$, and $m_3 = 7.50 \,\mathrm{kg}$ are placed on a frictionless surface as shown in the diagram below. If you push on box m_1 with a force of 8.25 N, find the magnitude of the contact force between boxes 1 and 2.

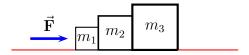


Figure 1: Problem 3

4. (10 points.) A 12.0 kg traffic light is suspended from two cables as described in Figure 2. Let $\theta_1 = 20.0^{\circ}$, and $\theta_2 = 50.0^{\circ}$. Find the tension in each cable.

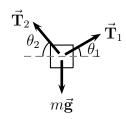


Figure 2: Problem 4

5. (10 points.) A block of mass $m_1 = 45.0 \,\mathrm{kg}$ on a horizontal surface is connected to a mass $m_2 = 15.0 \,\mathrm{kg}$ that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. Assume that the horizontal surface is smooth. Determine the magnitude of the tension in the cord.

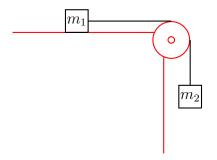


Figure 3: Problem 5

6. (10 points.) What is the stopping distance of a car that is traveling at $35.0\,\mathrm{m/s}$ on a horizontal highway? Let the coefficient of kinetic friction between road and tires be 0.60 and the coefficient of static friction between road and tires be 0.95.

7. (10 points.) A typical ramp in a cloverleaf interchange design on the interstate has a radius of $150\,\mathrm{m}$. What is the centripetal acceleration of a car exiting an interstate at a speed of $30.0\,\mathrm{m/s}$.

8. (10 points.) A stuntman drives a car over the top of a hill, the cross section of which can be approximated by a circle of radius $R = 150 \,\mathrm{m}$. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill?

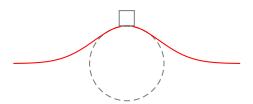


Figure 4: Problem 8