Midterm Exam No. 03 (Spring 2016)

PHYS 530A: Quantum Mechanics II

Date: 2016 Apr 21

1. The components of angular momentum J satisfy the commutation relations

$$\frac{1}{i\hbar} [J_i, J_j] = \varepsilon_{ijk} J_k. \tag{1}$$

The general properties of angular momentum can be deduced from these commutation relations. Since \mathbf{J}^2 is a scalar, it commutes with angular momentum \mathbf{J} . Thus, the common eigenvectors of \mathbf{J}^2 and J_z constitute a suitable set of basis vectors for discussing a dynamical system involving only the angular momentum. Let us denote the eigenvalues of these operators by the labeling scheme $\mathbf{J}'^2 = j(j+1)\hbar^2$, and $J_z' = m\hbar$. Thus, we write

$$\frac{1}{\hbar^2} \mathbf{J}^2 |j, m\rangle = j(j+1)|j, m\rangle, \tag{2a}$$

$$\frac{1}{\hbar}J_z|j,m\rangle = m|j,m\rangle. \tag{2b}$$

Let us also define the operators

$$J_{\pm} = J_x \pm i J_y. \tag{3}$$

(a) Show that

$$J_z\Big\{J_+|j,m\rangle\Big\} = (m+1)\Big\{J_+|j,m\rangle\Big\}. \tag{4}$$

Thus deduce that if m is an eigenvalue of J_z , then (m+1) is also an eigenvalue of J_z . Similarly, show that

$$J_z \Big\{ J_- |j, m\rangle \Big\} = (m-1) \Big\{ J_- |j, m\rangle \Big\}. \tag{5}$$

Thus deduce that if m is an eigenvalue of J_z , then (m-1) is also an eigenvalue of J_z .

(b) Show that

$$J_{+}J_{-} = \mathbf{J}^{2} - J_{z}^{2} + J_{z} \tag{6}$$

is a Hermitian operator. Thus, deduce that

$$j(j+1) - m(m-1) \ge 0, (7)$$

and then infer

$$-j \le m \le j+1. \tag{8}$$

(c) Show that

$$J_{-}J_{+} = \mathbf{J}^{2} - J_{z}^{2} - J_{z} \tag{9}$$

is a Hermitian operator. Thus, deduce that

$$j(j+1) - m(m+1) \ge 0, (10)$$

and then infer

$$-j-1 \le m \le j. \tag{11}$$

(d) Using Eqs. (8) and (11) in conjunction, show that

$$-j \le m \le j. \tag{12}$$

Further, infer that

$$j \ge 0. \tag{13}$$

Note that \mathbf{J}^2 being Hermitian implies $j(j+1) \geq 0$, and does not imply that j should be non-negative.

(e) The transitions from m=-j to m=j happen in $n=0,1,2,\ldots$ steps. Thus, infer that 2j=n. Thus,

$$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots,$$
 (14a)

$$m = -j, -j + 1, \dots, +j.$$
 (14b)

(f) Repeat the above analysis starting from the labeling scheme

$$\mathbf{J}^{\prime 2} = \beta \hbar^2, \quad \text{and} \quad J_z^{\prime} = m\hbar. \tag{15}$$