Final Exam (Spring 2018)

PHYS 530A: Quantum Mechanics 11
Date: 2018 May 8

1. (110 points.) The Hamiltonian for an hydrogenic atom is

(a)

2 2
P Ze
L_= (1)
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The eigenvalue equation for the hydrogenic atom is
H|En> = En|En>v (2)

where H' = E, are the eigenvalues of the Hamiltonian H. Projecting the above
eigenvalue equation on to the position basis we obtain

(r|H[E,) = En(r|Ep). (3)
The projection of the energy eigenfunctions |E,) on to the position basis

Un(r) = (r|Ep). (4)

are defined as the hydrogenic wavefunctions. Starting from Eq.(3) show that the
hydrogenic wavefunction satisfies the ‘time-independent Schrodinger equation’

h? Ze?
(——V2 — —) Un(r) = Bty (7). (5)
The effectively involves the substitution
n
p= ;V (6)
in the Hamiltonian.
We shall confine our discussion to bound states (E, < 0). Define

uZ%et 1 R

E, = TR and Qo

= E’
later being the (first) Bohr radius. Thus, derive

27 Z? 1

(724 22 vt = Ly vt ©
or agn

a

1



(¢) The Laplacian in spherical polar coordinates is
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Since angular momentum is a constant of motion we can expand the wavefunctions
in the form

wn(r) = Z Rnl(r)Yzm(ev (b)v (10)

where the spherical harmonics satisfy

1 0 490 1 &
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L?Y,(0, ¢) = —R° ( ) =R+ 1)Y,,(0,0). (11

Thus, derive the differential equation for the radial part of the wavefunction as

1d ,d I(I+1 27 Z*
[__73_ (I + )+__

r2dr dr r2 apr  ain?

} Rnl(r) =0. (12)

(d) In terms of the dimensionless variable

2Zr
- = 1
=2 (13)
derive  2d I(l+1) 1 1
_l_
— oy co . = 0. 14
[dzz zdz 2 (Qn)z] Bou() =0 (14)
(e) For z > 1 argue that we have
d? 1
[d—x2 B <_2n>2] ) =0 1

Solve this equation to learn the asymptotic behaviour of the radial wavefunction to
be ,
Ru(x) ~e 2 for x> 1. (16)

(f) For z < 1 argue that we have

1d ,d I(i+1)

__l’ J—
?2dr dx 2

R, (x) =0. (17)

Solve this equation to learn the limiting behaviour of the radial wavefunction to be

Ry(z) ~ 2! for r < 1. (18)



(2)

Use the above limiting forms to define

Ry(z) = x'e™2n L(z), (19)
and derive, in terms of .
{ 522 +{(2l+1)+1—y}— (n—l—l)} L(y) = 0. (21)

Compare this to the differential equation satlsﬁed by the Laguerre polynomials,
L (y), the Laguerre equation,

{ dd22+{a+1—y}—+n] L% (y) = 0. (22)

Thus, derive

o0Zr\' _ 2 27
Rnl<r>:N(J) o5 L) (—) (23)

nao
where NN is a normalization constant.

The normalization constant N is, in principle, determined using

/000 r2dr| Ry (r)|* = 1. (24)

Verify that, the above statement does not, immediately, lead to the orthogonality
relation for Laguerre polynomials,

o0 |
/ 4z 2% L) (2) L) (2) = 50 +‘O‘>‘. (25)
n!

0

Let us derive the Hellmann-Feynman theorem. Consider the energy eigenvalue equa-
tion

[H(A) = EV][E,A) =0 (26)
and its adjoint
(E,AH(A) = E(V)] = 0. (27)
Differentiate with respect to \:
oE OH
(55 - 50 ) 1B+ (- mlEN) =0 (28)
and multiply with (F, \| to obtain
OH OF
(G) = ENGEN =L (20)

which is the statement of the Hellmann-Feynman theorem.
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(j) Use the Hellmann-Feynman theorem, by regarding A as Z, in the hydrogenic atom

to evaluate ) - ) p
2N 2, + 2 _
<7“>n /0 rodr . | Ry (1)] s (30)

(k) Use the orthogonality relation of Laguerre polynomials in Eq. (25) in Eq. (30) to
derive the normalization constant N as

N2 (Z)% (n—1-1) (31)

~ 2 \ag CENI

Thus, derive the radial part of the hydrogenic wavefunction

3 l
2 7\ 2 — =1 /27 _Zr 27
Ryu(r) = < ) (n ) < 7“) ¢ ag LY (—T) (32)

"~ n2 \a (n+1)! nag nao




