
Final Exam (Spring 2018)

PHYS 530A: Quantum Mechanics II

Date: 2018 May 8

1. (110 points.) The Hamiltonian for an hydrogenic atom is

H =
p2

2µ
−
Ze2

r
. (1)

(a) The eigenvalue equation for the hydrogenic atom is

H|En〉 = En|En〉, (2)

where H ′ = En are the eigenvalues of the Hamiltonian H . Projecting the above
eigenvalue equation on to the position basis we obtain

〈r|H|En〉 = En〈r|En〉. (3)

The projection of the energy eigenfunctions |En〉 on to the position basis

ψn(r) = 〈r|En〉. (4)

are defined as the hydrogenic wavefunctions. Starting from Eq. (3) show that the
hydrogenic wavefunction satisfies the ‘time-independent Schrödinger equation’

(

−
h̄2

2µ
∇2 −

Ze2

r

)

ψn(r) = Enψn(r). (5)

The effectively involves the substitution

p =
h̄

i
∇ (6)

in the Hamiltonian.

(b) We shall confine our discussion to bound states (En < 0). Define

En = −
µZ2e4

2h̄2
1

n2
and a0 =

h̄2

µe2
, (7)

later being the (first) Bohr radius. Thus, derive

(

∇2 +
2Z

a0r

)

ψn(r) =
Z2

a20

1

n2
ψn(r). (8)
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(c) The Laplacian in spherical polar coordinates is

∇2 =
1

r2
∂

∂r
r2
∂

∂r
+

1

r2

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

. (9)

Since angular momentum is a constant of motion we can expand the wavefunctions
in the form

ψn(r) =
n−1
∑

l=0

l
∑

m=−l

Rnl(r)Ylm(θ, φ), (10)

where the spherical harmonics satisfy

L2Ylm(θ, φ) = −h̄2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

= h̄2l(l + 1)Ylm(θ, φ). (11)

Thus, derive the differential equation for the radial part of the wavefunction as

[

1

r2
d

dr
r2
d

dr
−
l(l + 1)

r2
+

2Z

a0r
−

Z2

a20n
2

]

Rnl(r) = 0. (12)

(d) In terms of the dimensionless variable

x =
2Zr

a0
(13)

derive
[

d2

dx2
+

2

x

d

dx
−
l(l + 1)

x2
+

1

x
−

1

(2n)2

]

Rnl(x) = 0. (14)

(e) For x≫ 1 argue that we have

[

d2

dx2
−

1

(2n)2

]

Rnl(x) = 0. (15)

Solve this equation to learn the asymptotic behaviour of the radial wavefunction to
be

Rnl(x) ∼ e−
x

2n for x≫ 1. (16)

(f) For x≪ 1 argue that we have

[

1

x2
d

dx
x2

d

dx
−
l(l + 1)

x2

]

Rnl(x) = 0. (17)

Solve this equation to learn the limiting behaviour of the radial wavefunction to be

Rnl(x) ∼ xl for x≪ 1. (18)
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(g) Use the above limiting forms to define

Rnl(x) = xle−
x

2nL(x), (19)

and derive, in terms of

y =
x

n
, (20)

[

y
d2

dy2
+ {(2l + 1) + 1− y}

d

dy
+ (n− l − 1)

]

L(y) = 0. (21)

Compare this to the differential equation satisfied by the Laguerre polynomials,
L
(α)
n (y), the Laguerre equation,

[

y
d2

dy2
+ {α+ 1− y}

d

dy
+ n

]

L(α)
n

(y) = 0. (22)

Thus, derive

Rnl(r) = N

(

2Zr

na0

)l

e
−

Zr

na0L
(2l+1)
n−l−1

(

2Zr

na0

)

, (23)

where N is a normalization constant.

(h) The normalization constant N is, in principle, determined using
∫

∞

0

r2dr|Rnl(r)|
2 = 1. (24)

Verify that, the above statement does not, immediately, lead to the orthogonality
relation for Laguerre polynomials,

∫

∞

0

dx xαe−xL(α)
n

(x)L
(α)
n′ (x) = δnn′

(n+ α)!

n!
. (25)

(i) Let us derive the Hellmann-Feynman theorem. Consider the energy eigenvalue equa-
tion

[H(λ)− E(λ)]|E, λ〉 = 0 (26)

and its adjoint
〈E, λ|[H(λ)− E(λ)] = 0. (27)

Differentiate with respect to λ:
(

∂E

∂λ
−
∂H

∂λ

)

|E, λ〉+ (E −H)|E, λ〉 = 0, (28)

and multiply with 〈E, λ| to obtain
〈

∂H

∂λ

〉

= 〈E, λ|
∂H

∂λ
|E, λ〉 =

∂E

∂λ
, (29)

which is the statement of the Hellmann-Feynman theorem.
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(j) Use the Hellmann-Feynman theorem, by regarding λ as Z, in the hydrogenic atom
to evaluate

〈

1

r

〉

n

=

∫

∞

0

r2dr
1

r
|Rnl(r)|

2 =
Z

a0n2
. (30)

(k) Use the orthogonality relation of Laguerre polynomials in Eq. (25) in Eq. (30) to
derive the normalization constant N as

N =
2

n2

(

Z

a0

)
3

2

√

(n− l − 1)!

(n+ l)!
. (31)

Thus, derive the radial part of the hydrogenic wavefunction

Rnl(r) =
2

n2

(

Z

a0

)
3

2

√

(n− l − 1)!

(n + l)!

(

2Zr

na0

)l

e
−

Zr

na0L
(2l+1)
n−l−1

(

2Zr

na0

)

. (32)
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