
Homework No. 05 (Spring 2018)

PHYS 530A: Quantum Mechanics II

Due date: Tuesday, 2018 Feb 20, 4.30pm

1. (40 points.) An eigenbasis that spans an n-dimensional space consists of eigenvectors
êi, where i = 1, 2, . . . , n. These eigenvectors have n components that can be indexed
using a, b = 1, 2, . . . , n. That is, êi = eai . Thus, using Einstein summation convention,
the orthonormality conditions can be stated as

ê†i · êj = δij , or eai
†eaj = δij , (1)

and the completeness relation can be stated as
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In this spirit, consider the following eigenbasis, constructed using n-th roots of unity,
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Show that
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and using this relation verify that the eigenbasis satisfies the completeness and orthonor-
mality relations. For n = 2, the eigenvectors are
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Show that these eigenvectors satisfy the orthonormality and completeness relations. De-
termine the eigenvectors for n = 3 and verify the corresponding completeness and or-
thonormality relations. Caution: Do not forget the complex conjugation.

2. (20 points.) Show that the action of a unitary operator U on a function f(A), where A

is an operator, satisfies
Uf(A)U−1 = f(UAU−1). (6)

3. (20 points.) In terms of the eigenvectors of the complementary variables, U and V ,
introduced in class, evaluate
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Thus, derive
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k(m−l) = nδlm. (8)
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