
Homework No. 07 (Spring 2018)

PHYS 530A: Quantum Mechanics II

Due date: Tuesday, 2018 Mar 20, 4.30pm

1. Any system obeying the Newtonian equation of motion

dp

dt
= −kx = − ∂

∂x

(

1

2
kx2

)

(1)

is broadly termed a simple harmonic oscillator.

2. A harmonic oscillator is also described by the Hamiltonian

H(x, p) =
p2

2m
+

1

2
kx2. (2)

3. We upgrade to quantum mechanics from the classical picture by imposing the commuta-
tion relations

[

x, x
]

= 0,
[

p, p
]

= 0,
[

x, p
]

= ih̄, (x† = x, p† = p, ) (3)

on the dynamical variables x and p. Further, the Hamilton equations of motion

dx

dt
=
∂H

∂p
, (4a)

dp

dt
= −∂H

∂x
, (4b)

are generalized to include the Heisenberg equations of motion

dx

dt
=
∂H

∂p
=

1

ih̄

[

x,H
]

, (5a)

dp

dt
= −∂H

∂x
=

1

ih̄

[

p,H
]

. (5b)

Evaluate the Hamilton and Heisenberg equations of motion for the harmonic oscillator.
Further, by projecting the Hamiltonian operator on an arbitrary state | 〉, and then
projecting the resultant state on a position eigenstate 〈x′|, and identifying the expectation
value of the Hamiltonian as the energy E of the system in state | 〉,

〈x′|H| 〉 = E〈x′| 〉, (6)

derive the time-independent Schrödinger equation for the harmonic oscillator.
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4. In terms of the non-Hermitian operators, ω =
√

k/m,

y =
1√
2h̄ω

(√
k x+ i

p√
m

)

, (7a)

y† =
1√
2h̄ω

(√
k x− i

p√
m

)

, (7b)

verify that
[

y, y†
]

= 1,
[

y, y
]

= 0,
[

y†, y†
]

= 0. (8)

Show that the Hamiltonian for a harmonic oscillator is given by

H(y, y†) = h̄ω

(

y†y +
1

2

)

. (9)

Evaluate the content of the Heisenberg equations of motion

dy

dt
=

1

ih̄

[

y,H
]

, (10a)

dy†

dt
=

1

ih̄

[

y†, H
]

. (10b)

5. The Hamiltonian of a harmonic oscillator is given in terms of the operator y†y. Thus,
we shall be interested in finding the eigenvalues and eigenvectors of this operator. In
particular, our goal will be to solve the eigenvalue equation

y†y|n′〉 = n′|n′〉, (11)

where |n′〉 are the eigenvectors corresponding to the eigenvalues n′.

(a) Argue that y†y can not be represented using finite dimensional matrices. Thus, argue
that the eigenvalues n′ must be infinite of them.

(b) Prove that y†y is an Hermitian operator. Thus, the eigenvalues n′ must be real.
Further, deduce that the eigenvalues n′ are non-negative.

(c) Show that y is a lowering operator, that is,

y|n′〉 = c
n
′|n′ − 1〉, (12)

where c
n
′ is to be determined. Thus, prove that, if n′ is an eigenvalue, then (n′ − 1)

is also an eigenvalue.

(d) Show that y† is a raising operator, that is,

y†|n′〉 = d
n
′|n′ + 1〉, (13)

where d
n
′ is to be determined. Thus, prove that, if n′ is an eigenvalue, then (n′ +1)

is also an eigenvalue.
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(e) Together, to satisfy the requirement that the eigenvalues are non-negative, the im-
plication is that the lowering operator can not indefinitely lower the state. Thus,
argue the existance of the ground eigenstate that satisfies

y|0〉 = 0. (14)

Thus, learn that n′ = 0 is an eigenstate.

6. (50 points.) To determine d
n
′ we construct an eigenstate in terms of the ground state,

|n′〉 = (y†)n
′

D
n
′

|0〉, D
n
′ = d0d1 . . . dn′−1. (15)

Presuming the eigenstates are normalized, use

〈m′|n′〉 = δ
m

′
n
′ (16)

to learn that
|D

n
′|2 = 〈0|yn′

(y†)n
′|0〉. (17)

Show that
〈0|yn′

(y†)n
′ |0〉 = n′ 〈0|yn′−1(y†)n

′−1|0〉. (18)

(Hint: Show that
[

y, (y†)n
′
]

= n′(y†)n
′−1.) Thus, deduce that |D

n
′| =

√
n! and |d

n
′| =√

n′ + 1. Thus, we have
y†|n′〉 =

√
n′ + 1|n′ + 1〉. (19)

Operate the lowering operator y on both sides of the above equation and decipher the
statement

y|n′〉 =
√
n′|n′ − 1〉 (20)

to learn that c
n
′ =

√
n′.

7. The projection of the eigenstates |n′〉 on the position eigenstates 〈x′| leads to the con-
struction of the corresponding wavefunctions

ψ
n
′(x′) = 〈x′|n′〉. (21)

We will set k = m = 1 by suitable scaling of x and p and further set h̄ = 1 to avoid
clutter in the equations. We shall also drop the primes to represent the eigenvalues.

(a) Starting from Eq. (14) deduce the differential equation satisfied by the ground state
to be

(

x+
∂

∂x

)

ψ0(x) = 0. (22)

Thus, show that
ψ0(x) = π− 1

4 e−
1

2
x
2

. (23)
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(b) Starting from the statement in Eq (15),

|n〉 = (y†)n√
n!

|0〉, (24)

deduce the relation

ψ
n
(x) =

1√
2nn!

(

x− ∂

∂x

)

n

ψ0(x). (25)

(c) Verify that
(

x− ∂

∂x

)

f(x) =

(

−e 1

2
x
2 ∂

∂x
e−

1

2
x
2

)

f(x). (26)

Thus, show that

(

x− ∂

∂x

)

n

f(x) = e
1

2
x
2

(

− ∂

∂x

)

n

e−
1

2
x
2

f(x). (27)

(d) The Hermite polynomials are defined as

H
n
(x) = ex

2

(

− ∂

∂x

)

n

e−x
2

. (28)

Evaluate H
n
(x) for n = 0, 1, 2, 3, 4. Thus, derive

ψ
n
(x) =

1√
2nn!

ψ0(x)Hn
(x). (29)

Plot ψ
n
(x) for n = 0, 1, 2, 3, 4.
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