
Midterm Exam No. 02 (2020 Spring)

PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University–Carbondale

Date: 2020 Apr 9

1. (20 points.) The path of a relativistic particle moving along a straight line with constant
(proper) acceleration α is described by equation of a hyperbola

z2 − c2t2 = z2
0
, z0 =

c2

α
. (1)
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Figure 1: Problem 1

(a) This represents the world-line of a particle thrown from z > z0 at t < 0 towards
z = z0 in region of constant (proper) acceleration α, as described by the bold (blue)
curve in the space-time diagram in Figure 1. In contrast, a Newtonian particle
moving with constant acceleration α is described by equation of a parabola

z − z0 =
1

2
αt2, (2)

as described by the dashed (red) curve in the space-time diagram in Figure 1. Show
that the hyperbolic curve

z = z0

√

1 +
c2t2

z2
0

(3)
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in regions that satisfy

t ≪
c

α
(4)

is approximately the parabolic curve

z = z0 +
1

2
αt2 + . . . . (5)

(b) Recognize that the proper acceleration α does not have an upper bound.

(c) A large acceleration is achieved by taking above turn while moving very fast. Thus,
turning around while moving close to the speed of light c should achieve the highest
acceleration. Show that α → ∞ corresponding to z0 → 0 represents this scenario.
What is the equation of motion of a particle moving with infinite proper acceleration.
Plot world-lines of particles moving with α = c2/z0, α = 10c2/z0, and α = 100c2/z0.

2. (20 points.) The path of a relativistic particle 1 moving along a straight line with
constant (proper) acceleration g is described by the equation of a hyperbola

z1(t) =
√

c2t2 + z2
0
, z0 =

c2

g
. (6)

This is the motion of a particle that comes to existance at z1 = +∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = z0, and then returns back
to infinity. Consider another relavistic particle 2 undergoing hyperbolic motion given by

z2(t) = −

√

c2t2 + z2
0
, z0 =

c2

g
. (7)

This is the motion of a particle that comes to existance at z2 = −∞ at t = −∞, then
‘falls’ with constant (proper) acceleration g. If we choose xq(0) = 0 and yq(0) = 0, the
particle ‘falls’ keeping itself on the z-axis, comes to stop at z = −z0, and then returns
back to negative infinity. The world-line of particle 1 is the blue curve in Figure 2, and
the world-line of particle 2 is the red curve in Figure 2. Using geometric (diagrammatic)
arguments might be easiest to answer the following. Imagine the particles are sources of
light (imagine a flash light pointing towards origin).

(a) At what time will the light from particle 1 first reach particle 2? Where are the
particles when this happens?

(b) At what time will the light from particle 2 first reach particle 1? Where are the
particles when this happens?

(c) Can the particles communicate with each other?

(d) Can the particles ever detect the presence of the other? In other words, can one
particle be aware of the existence of the other? What can you deduce about the
observable part of our universe from this analysis?
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Figure 2: Problem 2

3. (20 points.) A relativisitic particle in a uniform magnetic field is described by the
equations

dE

dt
= F · v, (8a)

dp

dt
= F, (8b)

where

E = mc2γ, (9a)

p = mvγ, (9b)

and
F = qv ×B. (10)

Show that
dγ

dt
= 0. (11)

Then, derive
dv

dt
= v× ωc, (12)

where

ωc =
qB

mγ
. (13)

Compare this relativistic motion with the associated non-relativistic motion.
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4. (20 points.) In terms of the four-vector potential

Aµ = (
1

c
φ,A) (14)

the Maxwell field tensor Fµν is defined as

Fµν = ∂µAν − ∂νAµ. (15)

Derive
c2F µνFµν = 2(c2B2

− E2), (16)

which is invariant under Lorentz transformations.
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