
Homework No. 03 (2020 Spring)
PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University–Carbondale

Due date: Thursday, 2020 Feb 6, 4.30pm

0. Problems 1, 4, and 6, are to be submitted for assessment. Rest are for practice and some
will be covered in lectures.

1 Complete elliptic integrals

Complete elliptic integrals of the first and second kind can be defined using the integral
representations,

K(k) =

∫ π

2

0

dψ
1

√

1− k2 sin2 ψ
, (1a)

E(k) =

∫ π

2

0

dψ

√

1− k2 sin2 ψ, (1b)

respectively.

1. (20 points.) Verify that

K(0) =
π

2
, (2a)

E(0) =
π

2
. (2b)

Then, verify that
E(1) = 1. (3)

Note that

K(1) =

∫ π

2

0

dψ

cosψ
(4)

is devergent. To see the nature of divergence we introduce a cutoff parameter δ > 0 and
write

K(1) =

∫ π

2
−δ

0

dψ

cosψ
. (5)

Evaluate the integral, (using the identity d(secψ+tanψ)/dψ = secψ(secψ+tanψ),) and
show that

K(1) ∼ ln 2− ln δ − δ2

12
+O(δ)4 (6)

has logarithmic divergence. Using Mathematica (or another graphing tool) plot K(k) and
E(k) as functions of k for 0 ≤ k < 1.
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2. (20 points.) The complete elliptic integrals have the power series expansions

K(k) =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2

k2n =
π

2

[

1 +
1

4
k2 +

9

64
k4 + . . .

]

, (7a)

E(k) =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2

k2n =
π

2

[

1− 1

4
k2 − 3

64
k4 − . . .

]

. (7b)

The leading order contribution in the power series expansions are from K(0) and E(0).
Evaluate the next-to-leading order contributions in the above series expansions by ex-
panding the radical in Eqs.(1) as a series. Use

1√
1− x

= 1 +
1

2
x+ . . . , (8a)

√
1− x = 1− 1

2
x+ . . . . (8b)

3. (20 points.) Show that the perimeter of an ellipse, characterized by the equation

x2

a2
+
y2

b2
= 1, (9)

with eccentricity

e =

√

1− b2

a2
, (10)

is given by
C = 4aE(e), (11)

where E(k) is the complete elliptic integralof the second kind,

E(k) =

∫ π

2

0

dψ

√

1− k2 sin2 ψ. (12)

A circle is an ellipse with zero eccentricity. Deduce the circumference of a circle using the
formula.

4. (50 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.)
A simple pendulum, consisting of a particle of mass m suspended by a string of length l
in a uniform gravitational field g, is described by the Hamiltonian

H =
1

2
ml2φ̇2 −mgl cosφ. (13)

(a) For initial conditions φ(0) = φ0 and φ̇(0) = 0 show that

1

2
ml2φ̇2 −mgl cosφ = −mgl cosφ0. (14)
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Thus, derive
dt

T0
=

1

2π

dφ
√

2(cosφ− cosφ0)
(15)

where T0 = 2π
√

l/g.

(b) Determine the period of oscillations of the simple pendulum as a function of the
amplitude of oscillations φ0 to be

T = T0
2

π
K

(

sin
φ0

2

)

, (16)

where

K(k) =

∫ π

2

0

dθ
√

1− k2 sin2 θ
(17)

is the complete elliptic integral of the first kind. Hint: Substitute

sin θ =
sin φ

2

sin φ0

2

. (18)

(c) Using the power series expansion

K(k) =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2

k2n (19)

show that for small oscillations (φ0/2 ≪ 1)

T = T0

[

1 +
φ2

0

16
+ . . .

]

. (20)

(d) Estimate the percentage error made in the approximation T ∼ T0 for φ0 ∼ 60◦.

(e) Plot the time period T of Eq. (16) as a function of φ0. What can you conclude about
the time period for φ0 = π?

2 Exact result in terms of elliptic integrals

5. (30 points.) The current density for a circular loop of radius a carrying a steady current
I is given by

j(r) = φ̂ Iδ(ρ− a)δ(z), (21)

where the the loop is chosen to be in the x-y plane with the origin as its center.

(a) Verify that
∫

S

da · j = I, (22)

where surface S is a half-plane of constant φ.
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(b) Show that magnetic vector potential is

A(r) =
µ0I

4π
a

∫

2π

0

dφ′
φ̂′

√

z2 + ρ2 + a2 − 2ρa cos(φ− φ′)
. (23)

(c) Substitute φ′ − φ→ φ′ and show that

A(r) = φ̂
µ0I

4π
a

∫

2π

0

dφ′
cosφ′

√

z2 + ρ2 + a2 − 2ρa cosφ′

. (24)

(d) The φ′ integral can not be completed in terms of elementary functions. Show that
in terms of the complete elliptic integrals of the first and second kind,

K(k) =

∫ π

2

0

dψ
1

√

1− k2 sin2 ψ
, (25a)

E(k) =

∫ π

2

0

dψ

√

1− k2 sin2 ψ, (25b)

respectivly, the magnetic vector potential is

A(r) = φ̂
µ0I

4π

4a
√

z2 + (ρ+ a)2

[

2

k2

{

K(k)− E(k)
}

−K(k)

]

, (26)

where

k2 =
4aρ

z2 + (ρ+ a)2
. (27)

Hint: Show that the contributions to the φ′ integral in Eq. (24) gets equal contribu-
tions from 0 to π and π to 2π. In particular, use the form with (z2+ρ2+a2+2ρa cosφ′)
in the denominator. Then, use the half-angle formula to obtain the integral in terms
of the complete elliptic integrals.

6. (30 points.) We have earlier found the magnetic vector potential to be zero everywhere
along the symmetry axis of the circular loop. With our exact expression let us calculate
an approximate expression for the magnetic vector potential very close to the axis. Using
the power series expansions for the complete elliptic integrals show that

2

k2

{

K(k)− E(k)
}

−K(k) =
π

16
k2 + . . . . (28)

Drop the next-to-leading order terms, valid when k ≪ 1, and show that

A(r) = φ̂A(ρ, z) = φ̂
µ0I

4π

a2πρ

[z2 + (ρ+ a)2]
3

2

. (29)

Check that A = 0 on the axis. Show that the magnetic field close to the axis (k ≪ 1) is
given by

B(r) = −ρ̂
∂A

∂z
+ ẑ

(

∂

∂ρ
+

1

ρ

)

A. (30)
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7. (20 points.) The expression for the magnetic vector potential A and the magnetic field
B for a circular loop of radius a carrying a current I is given in terms of the complete
elliptic integrals. An approximate expression for the magnetic vector potential close to
the axis is

A(r) = φ̂A(ρ, z) = φ̂
µ0I

4π

a2πρ

[z2 + (ρ+ a)2]
3

2

. (31)

Check that A = 0 on the axis. The magnetic field close to the axis, then, is calculated
using

B = ∇×A. (32)

Show that the magnetic field close to the axis (k ≪ 1) is given by

B(r) = −ρ̂
∂A

∂z
+ ẑ

(

∂A

∂ρ
+ C

)

. (33)

Find C.

8. (30 points.) The current density for a circular loop of radius a carrying a steady current
I is given by

j(r) = φ̂ Iδ(ρ− a)δ(z), (34)

where the the loop is chosen to be in the x-y plane with the origin as its center.

(a) Using Bio-Savart law and completing the integrals involving δ-functions show that
magnetic field has the form

B(r) =
µ0I

4π

∫

2π

0

dφ′

[

a2ẑ+ azρ̂′ − aρ(ρ̂× φ̂′)
]

[z2 + ρ2 + a2 − 2ρa cos(φ− φ′)]
3

2

. (35)

(b) Substitute φ′ − φ→ φ′ and show that

B(r) =
µ0I

4π

∫

2π

0

dφ′

[

(a2 − aρ cosφ′)ẑ+ azρ̂ cos φ′ + azφ̂ sin φ′

]

[z2 + ρ2 + a2 − 2ρa cosφ′]
3

2

. (36)

(c) The φ′ integral can not be completed in terms of elementary functions. Show that
in terms of the complete elliptic integrals of the first and second kind,

K(k) =

∫ π

2

0

dψ
1

√

1− k2 sin2 ψ
, (37a)

E(k) =

∫ π

2

0

dψ

√

1− k2 sin2 ψ, (37b)

respectivly, the magnetic field is

B(r) = ẑ
µ0I

4π

2
√

z2 + (ρ+ a)2

[

K(k)− (z2 + ρ2 − a2)

z2 + (ρ− a)2
E(k)

]

−ρ̂
µ0I

4π

2
√

z2 + (ρ+ a)2
z

ρ

[

K(k)− (z2 + ρ2 + a2)

z2 + (ρ− a)2
E(k)

]

, (38)
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where

k2 =
4aρ

z2 + (ρ+ a)2
. (39)

Hint: Show that the contributions to the φ′ integral in Eq. (24) gets equal contribu-
tions from 0 to π and π to 2π. In particular, use the form with (z2+ρ2+a2+2ρa cosφ′)
in the denominator. Then, use the half-angle formula to obtain the integral in terms
of the complete elliptic integrals. It is useful to identify

∫ π

2

0

dψ
1

(1− k2 sin2 ψ)
3

2

=
E(k)

(1− k2)
. (40)
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