Midterm Exam No. 01 (Fall 2020)

PHYS 500A: MATHEMATICAL METHODS

Department of Physics, Southern Illinois University-Carbondale
Date: 2020 Sep 10

1. (20 points.) In terms of spherical coordinates (r, θ, ϕ) it is given that

$$\frac{\partial}{\partial \phi} \hat{\boldsymbol{\phi}} = a \,\hat{\mathbf{r}} + b \,\hat{\boldsymbol{\theta}} + c \,\hat{\boldsymbol{\phi}}. \tag{1}$$

Find the expression for the components a, b, and c, such that the above equation is an identity.

2. (20 points.) In terms of cylindrical coordinates (ρ, ϕ, z) we can write

$$\nabla = \nabla_{\rho} + \hat{\mathbf{z}} \frac{\partial}{\partial z},\tag{2}$$

$$\nabla_{\rho} = \hat{\rho} \frac{\partial}{\partial \rho} + \hat{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi}.$$
 (3)

Verify the following identities:

$$\nabla_{\rho} \cdot \left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right) = 2\pi \delta^{(2)}(\boldsymbol{\rho}), \qquad \nabla_{\rho} \times \left(\frac{\hat{\boldsymbol{\rho}}}{\rho}\right) = 0,$$
 (4a)

$$\nabla_{\rho} \cdot \left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right) = 0, \qquad \nabla_{\rho} \times \left(\frac{\hat{\boldsymbol{\phi}}}{\rho}\right) = \hat{\mathbf{z}} \, 2\pi \delta^{(2)}(\boldsymbol{\rho}). \tag{4b}$$

Hint: Evaluate the quantities for $\rho \neq 0$. Then, use the divergence theorem or the Stoke's theorem for arbitrary volumes and surfaces in conjunction with the definition of δ -function.

3. (20 points.) In terms of cylindrical coordinates (ρ, ϕ, z) we can write

$$\nabla = \hat{\rho} \frac{\partial}{\partial \rho} + \hat{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial}{\partial z}.$$
 (5)

Given

$$\mathbf{B} = \hat{\mathbf{z}} 2 \ln \frac{2L}{\rho},\tag{6}$$

where L is a constant. Evaluate (without switching coordinate systems)

$$\nabla \cdot \mathbf{B} \quad \text{for} \quad \rho \neq 0$$
 (7)

and

$$\nabla \times \mathbf{B} \quad \text{for} \quad \rho \neq 0.$$
 (8)

4. (20 points.) In terms of cylindrical coordinates (ρ, ϕ, z) we can write

$$\nabla = \hat{\rho} \frac{\partial}{\partial \rho} + \hat{\phi} \frac{1}{\rho} \frac{\partial}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial}{\partial z}.$$
 (9)

Derive the expression for the Laplacian in cylindrical coordinates.

5. (20 points.) In terms of unit vectors

$$\hat{\mathbf{r}} = \sin \theta \cos \phi \,\hat{\mathbf{i}} + \sin \theta \sin \phi \,\hat{\mathbf{j}} + \cos \theta \,\hat{\mathbf{k}},\tag{10a}$$

$$\hat{\boldsymbol{\theta}} = \cos\theta\cos\phi\,\hat{\mathbf{i}} + \cos\theta\sin\phi\,\hat{\mathbf{j}} - \sin\theta\,\hat{\mathbf{k}},\tag{10b}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi\,\hat{\mathbf{i}} + \cos\phi\,\hat{\mathbf{j}},\tag{10c}$$

the basis vectors for spherical polar coordinates are

$$\mathbf{e}_r = \hat{\mathbf{r}} \tag{11a}$$

$$\mathbf{e}_{\theta} = r\hat{\boldsymbol{\theta}}$$
 $\mathbf{e}^{\theta} = \frac{1}{r}\hat{\boldsymbol{\theta}},$ (11b)

$$\mathbf{e}_{\phi} = r \sin \theta \hat{\boldsymbol{\phi}}$$

$$\mathbf{e}^{\phi} = \frac{1}{r \sin \theta} \hat{\boldsymbol{\phi}}.$$
 (11c)

Given the expression for the Christoffel symbols

$$\Gamma_{ij}^{k} = \left(\frac{\partial}{\partial u^{j}} \mathbf{e}_{i}\right) \cdot \mathbf{e}^{k} \tag{12}$$

for the spherical coordinate system, evaluate

$$\Gamma^{\phi}_{\theta\phi}$$
. (13)