Homework No. 08 (2021 Spring)

PHYS 520B: ELECTROMAGNETIC THEORY

Department of Physics, Southern Illinois University—Carbondale
Due date: Tuesday, 2021 Apr 13, 12.30pm

1. (20 points.) Using Maxwell’s equations, without introducing potentials, show that the
electric and magnetic fields satisfy the inhomogeneous wave equations
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2. (20 points.) Consider the retarded Green’s function
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(a) For v = 0 and ¢’ = 0 show that
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(b) Then, evaluate
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(¢) From the answer above, what can you comment on the physical interpretation of
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3. (20 points.) The n-dimensional Euclidean Green’s function satisfies
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(a) Show that the solution to this equation can be written as the Fourier transform
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(b) Verify the integral
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(c¢) Using Eq. (@) in Eq. (@) show that
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(e) Substitute the integral of Eq. (d) in Eq. (8), and use the integral representation of
Gamma function,

(d) Show that
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where I'(z) is the analytic continuation of factorial, n! = I'(n+ 1), after substituting
s = 1/t there, to show that
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where RZ = 2% + ... + 22,
(g) Show that integration of the Euclidean Green’s function over one coordinate leads
to the Euclidean Green’s function in one lower dimension,
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Hint: Substitute =, = R,_; tanf and use the integral
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4. (20 points.) Evaluate the integral
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as a sum. The resultant sum is the Riemann zeta function. Determine ((2).
Hint: Use the identity
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where the sum on 7 runs over the roots a, of the equation F'(z) = 0.



