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I. THREE EQUAL CHARGES AT THE CORNERS OF
AN EQUILATERAL TRIANGLE

A problem that appears in at least two current textbooks
on elementary physics' goes something like this:

Three equal charges are arranged on the corners of an
equilateral triangle. Where does the value of the elec-
trostatic field equal zero?

Practically all my colleagues and my students (as well as
the answer keys supplied with the cited texts) reply to this
question with something like this: “At the center of the
triangle, by symmetry.” If I ask “Where else is the field
equal to zero?” there is usually a short pause and my collea-
gues and students say “At infinity.” But then when I ask
“And where else?” the pause is longer.

If I suggest that there are three other points at which the
electric field is zero, a common response is “Oh, really?”’—
expressing a combination of doubt and surprise. It is amus-
ing that such an apparently simple problem surprises us
with its answer. Where are these other zeros?

Certainly the other zeros of the electric field will lie on
symmetry axes in the plane of the charges. Let us place the
center of the triangle at the origin and the three charges,

each -+ g, in the x—p plane at ( — @,0), (a/2,4/3a/2), and

(@/2, — \3a/2). On the x axis, which is an axis of symmetry,
we calculate the electric field directly for x> — a:

_ 9 2{x —a/2) 1 ) (1)
dme\[(x — a/2P? + 3a%/4)*? ' (x+a)?)’

As expected, E, (0) = 0. But if we calculate the derivative
dE /dx at the origin, we find it to be nonzero and negative.
Now, close to the charge on the x axis E,— + «, and
E_>0asx— + co.Thus, anegative value of dE, /dx at the
origin implies, as a simple sketch of E, vs x will show, that
thereis at least one more point with E, = 0for whichx > 0.
In fact, setting £, = 0 and solving for x in Eq. (1) we find
that this point is at x = 0.284718a, or a distance from the
center that is 0.164382 times the length of one side of the
triangle.

From the threefold symmetry of the charges, we know
there are two more off-center points where the field is zero.

After working out this problem I found that the problem
of three charges had been discussed quite completely by Sir
James Jeans? in his textbook on electricity and magnetism.
For reasons I do not understand, he gives the location of
the field zero at a value of x “‘just less than la” (instead of
0.285a), he calculates the potential at this field zero to be
3.04 g/4meqa (instead of the correct value 3.02 g/4weya),
and he sketches the equipotential line through the field ze-
ros incorrectly (it does not cross itself at right angles in the
plane of the charges). Figure 1 shows an improved sketch of
several electric field and equipotential lings in the plane of
the charges.

Then, after circulating a draft of this note, my colleague
William Madigan showed me a treatment of the problem in
a very completely illustrated monograph on electrostatics
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by E. Durand? in which field lines and equipotentials are
plotted for a large number of charge distributions. The
problem of four equal charges on the corners of a square is
presented in accurate detail by Durand, and the problem of
three equal charges on the corners of an equilateral triangle
is left as an exercise (although an answer to the exercise is
given with a somewhat inaccurate sketch of the equipoten-
tial and electric field lines).

II. EQUAL CHARGES AT THE CORNERS OF ANY
REGULAR POLYGON

In the electric field of equal charges placed at the corners
of an N-sided regular polygon, there are N noncentral ze-
ros. A straightforward way to show this fact is as follows.
Let the polygon be inscribed in a circle of radius a. For the
region 7 < a the electrostatic potential may be expanded*:

g, 1

& (r)= —_—

() ;477-60 |_l'—l'"|
— ler IYlm (0’¢)

o 6214+ 1)
where

4n Y 1 (0ns9n)

le = ; ’ I+ 1 ’

i
[}
|
b
I
1

Fig. 1. Several equipotential lines (solid) and electric field lines (dashed) in
the plane of three equal charges, each 4 g, at the corners of an equilateral
triangle. The equipotentials shown are for @ = 3.0076 {A), 3.0196 (B),
3.7040 (C), and 2.5080 (D), in units of g/4srea, where a is the radius of the
circle on which the charges lie. The electric field is zero at the center and at
the crossings of B.
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r = (r,0,¢ ) is the field point, and r, = (7,,6,,4,) is the posi-
tion of the nth chargeg,,.

For N regularly spaced equal charges ¢ on a circle of
radius @ whose plane is perpendicular to the polar axis,
8, =m/2,

QOO = Nq/ﬂm »

Q= —5/47Nq/2a°,

Qo= 01=0,=0,
and

Q,, =0 (for N> 3).
In the plane of the charges the potential then becomes

n T )= _Ng_ ( r )
¢( 2 ¢ dmeqa I+ 4q° + 2
Since E, = — d®P /0r, for r<a we see that E, <0. On each
of the N lines from the origin through the midpoint
between two adjacent charges, the value of E, is contin-
uous, and for r»a, E, = Ng/4me,r 2. Thus there must be a
point on each line where E, changes sign and E = 0. As ¥
increases, this point gets closer to the circle on which the
charges lie.

Another way to see the result in Eq. (2) is as follows. On
the z axis, perpendicular to the plane of the charges,

P(z) = Z%(l— gz:—z +)

Since there is no charge at the origin, V>® = O requires that
@ must also have a quadratic dependence on the distance
from the z axis. This implies that, close to the origin, the
equipotential surfaces intersect the plane of the charges in
concentric ellipses or hyperbolas. But for three or more
charges, the only such curves which have the appropriate
rotational symmetry are circles. Thus, close to the origin,
the potential is cylindrically symmetric (which explains
why @, = 05, =0), and

2

Pipa)= o (1— T a4y 4 ).
4meqa 2a

To evaluate the constant 4, we note that V2@ = d 2E, /dx?

+ &E,/dy* + &°E,/dz* = 0 which requires that 4 = 1/

44, and we have again obtained the result shown in Eq. (2).

'R. T. Weidner and R. L. Sells, Elementary Classical Physics (Allyn and
Bacon, Boston, 1973), 2nd ed., p. 465. R. A. Serway, Physics for Scientists
and Engineers (Saunders, Philadelphia, 1983), p. 422.

?8ir James Jeans, The Mathematical Theory of Electricity and Magne-
tism (Cambridge University Press, London, 1933), 5th ed., pp. 54-56.
3E. Durand, Electrostatique, Tome ILes Distributions (Masson, Paris,

1964).
4See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1975}, 2nd ed.

SOLUTION TO PROBLEM ON PAGE 247

Since the only force is the gravitational force, which is
conservative, mechanical energy is conserved. Picking the
zero of potential energy at the ground, the initial energy is
entirely kinetic energy.

E; =} muj =} m(v + v},)
by the Pythagorean theorem. At the window, the ball is

moving horizontally, and since there is no acceleration in
the horizontal direction

v, =0 and v, =v,.

The final energy is therefore
E; =mgh + § mv,
E; = E, by energy conservation,
§ mvly + ) mvl, = mgh + 1 mvl,,
v =V2gh.

This illustrates the physics involved that the height 4 deter-
mines the initial vertical component of the velocity.

The next question of physics which needs to be answered
is, “What determines the initial horizontal component of
the velocity?” The answer is the distance D and the time ¢;
the distance is given but not the time. At this point students
should recognize that the time for the projectile to reach its
maximum height is determined by the initial vertical com-
ponent of the velocity; so back to the vertical motion.

a, = (v, —v,)/t from the definition of acceleration
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(constant a),
-—g=(0— vyO)/t’

t=v,/g= J2gh /g =\2h /g.

From? (and D) we can now determine v,,, realizing that v,
is constant.

v, =v, =D/t=D\g/h.

Thus we have found v, =y2gh and v, = D+g/2h,
which uniquely specify the initial velocity in terms of its
components. These can be converted to the alternate repre-
sentation of velocity, namely speed and angle, in the stan-
dard way, giving the answers of Hudson.

vo =V + V% =gD?/2h + 2gh

=gD? +4h?)/2h,
tan 0 = v,,/v,, = 2gh /Dg/2h =2h /D.
I prefer the solution in terms of v, and v, since it shows

explicitly that v,, is determined by 4 alone and that v,,
depends on both /4 and D.
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