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1. (20 points.) Not available in preview mode.
2. (20 points.) Not available in preview mode.

3. (20 points.) The free Green dyadic I'y(r,1’;w) satisfies the dyadic differential equation
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(a) Show that the divergence of the free Green dyadic is
V -To(r,r';w) = =Vi® (r —1'). (2)

(b) Substitute the divergence in the dyadic differential equation and derive
2
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-V —I—C—2 To(r,r’;w) = VV—I—;I O (r—r'). (3)

(c¢) Construct the differential equation
— (V2 + E)Go(r,v;w) = 0¥ (r — 1) (4)
for the Green function Gy(r,r’;w), where
w
k=—
c
The free Green function has the (causal) solution
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Go(r —1';w) (6)
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Show that the free Green dyadic can be expressed in terms of the free Green function
as

Lo(r,r';w) = [VV + k*1]Go(r, 1 w) (7)



(d) Evaluate the gradient operators and show that

6ikr . . .
Lo(r;w) = o [ — u(ikr)l + v(ikr)rt|, (8)
where
u(r) =1 —x + 22, (9a)
v(z) = 3 — 3z + 2°. (9b)

4. (20 points.) The free Green dyadic I'y can be expressed in terms of the free Green
function Gg as

Lo(r,r';w) = [VV + k*1] Go(r, 1'; w), (10)
where
o . eik\r—r’\ "
o(r—r,w)—m- (11)
In the far-field approximation,
r <, (12)

when the observation point r is very far relative to the source point r’, show that

r—r|=Vr24+r2 -2 ~r— i1 (13)

Thus, in the far-field asymptotic limit show that

ik|r—r’| ikr
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where we introduced the notation
k' =kr. (15)

Further, the far-field approximation allows the replacement
VvV — ik (16)
Thus, in the far-field approximation show that
(VV + k1) — (1 — t1)k? = — x (F x 1)k?, (17)

which projects vectors in the plane normal to the radial direction. Thus, show that the
free Green dyadic in the far-field approximation takes the form
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To(r,r;w)= -1 x (fx1)——
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(18)



5. (20 points.) The scattering amplitude is given by

2

f(ea ¢aw) = _Z]f_ﬂ_X(k, - k,OJ), (19)

where x(q,w) is the Fourier transform of y(r,w),

x(q,w) = /d?’r e x(r,w) (20)

If the obstacles are confined on a plane, say z = 0, then it is convenient to define polar-
izability per unit area A = a/Area,

x(r,w) =4rA(s) 0(z), (21)

where the o-function has been used to describe the assumption that the obstacles in a
thin film are confined to a plane, z = 0 here. Once the obstacles are restricted to be
on a plane, we can choose the direction of incidence k of the plane wave to be normal
to the plane. That is, k - s = 0, where s are the positions of the point obstacles on the
plane. Further, notice that in this special case the electric field Eq is independent of the
position s. Using these considerations show that the scattering amplitude, for isotropic
polarizabilities, is given by

£(0,6,w) = —k? / s ) (s). (22)

For a disc of radius R centered at position sy with uniform polarizability per unit area A
complete the integrals to obtain

J1(kRsin )

o \12.-p2
f(0,¢,w) = =Ak"TR*2 " Rond

gikiso (23)

Hint: Use the integral representation of zeroth order Bessel function of the first kind

o d¢ it cos ¢

and the identity
b
/ tdtJo(t) = bJ1(D). (25)
0

Note the limiting value
1
lim 210) L (26)

z—=0 2’

which guarantees a well defined value for the scattering amplitude at 8 = 0. We observe
the interesting feature that the scattering amplitude at 6 = 0 is entirely given by the area
of the disc.



