Homework No. 07 (2024 Spring)
PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale

Due date: Tuesday, 2024 Mar 26, 4.30pm

1. (20 points.) (Refer Landau and Lifshitz, Problem 1 in Chapter 3.) A simple pendulum
consists of a particle of mass m suspended by a massless rod of length [ in a uniform
gravitational field g.

(a)

Identify the two forces acting on the pendulum to be the force of gravity mg and
the force of tension T. Thus, deduce the Newton equation of motion to be

ma =mg + T, (1)

where a is acceleration of mass m. Starting from Eq. (1) derive the equation of
motion for the simple pendulum

d? .
Wf = —wg sin @, (2)

where
B 2T /g

7 (3)

wo—?o— I

Starting from Eq. (2) derive the statement of conservation of energy for this system,

1 .
lezqﬁz — mgl cos ¢ = constant. (4)

Hint: Multiply Eq.(2) by é and express the equation as a total derivative with
respect to time.

For initial conditions ¢(0) = ¢o and ¢(0) = 0 show that
1 .-
§ml2q52 — mgl cos ¢ = —mgl cos ¢g. (5)

Thus, derive

“_1 4
Ty 27 \/2(cos ¢ — cos o)

where Ty = 2m4/1/g.



(d) The time period of oscillations of the simple pendulum is equal to four times the
time taken between ¢ = 0 and ¢ = ¢y. Thus, show that

B E %o do
= 427r 0 +/2(cos ¢ — cos ) @)
_ T do do

(8)

s . . )
0 \/81112 % — sin? %

Then, substitute sinf = sin(¢/2)/sin(¢/2) to determine the period of oscillations
of the simple pendulum as a function of the amplitude of oscillations ¢q to be

T="T, %K (sin %) : 9)

where

K(k) = / 2 do
0 \/1—k2sin?6
is the complete elliptic integral of the first kind.

(e) Using the power series expansion

.m@:gE:bgg;}ﬁn (11)

n=0

show that for small oscillations (¢y/2 < 1)

T:TO{1+¢—3+..}. (12)
16

(f) Estimate the percentage error made in the approximation 7" ~ T for ¢¢ ~ 60°.

(g) Plot the time period T" of Eq. (9) as a function of ¢y. What can you conclude about
the time period for ¢g = w?

2. (20 points.) Consider the differential equation
B(t) = —wiz(t), (13)

where dot denotes differentiation with respect to time, in conjunction with a suitable
initial condition.

(a) Using Fourier transform
— e i (w), (14a)

dt ™'z (t), (14Db)



show that Z(w) satisfies the algebraic equation
— Wi (w) = Wiz (w). (15)

Observe that we can arrive at this equation using the transcription,

3} :
5% W (16a)

z(t) = z(w), (16Db)
in the original differential equation. Thus, the algebraic equation for z(w) is
(w? — wHi(w) = 0. (17)
(b) The solution to the above algebraic equation can be expressed in the form
i(w) = a(w)d(w® — w?), (18)
where &(w) is to be determined. Using the property of d-functions show that

a(wr) a(—wi)

T(w) = o(w — ) ) 19
T(w) 2o (w—wr)+ o (w~+wr) (19)
(c¢) Using Fourier transform evaluate
1 d(wl) it 1 d(—wl) i1t
1) = — w1 o wrt 20
z(t) 21 2wy 2 2wy c (20)
In terms of numbers
1 6&(&]1)
Al = — 21
1 o 20)1 ’ ( a)
1 6&(—&)1)
B = — 21b
YT o 2w, (21b)
express the solution in the form
x(t) = Aje™™ + Bre™t, (22)

The numbers A; and B; are determined from initial conditions. For example, show
that for initial conditions z(0) = A and #(0) = 0 the solution is

x(t) = Acoswst. (23)
3. (20 points.) Consider the set of differential equations

F1(t) + wiry (t) = wizs(t), (24a)
Fo(t) + wixa(t) = wizy (1), (24b)

where dot denotes differentiation with respect to time, in conjunction with suitable initial
conditions.



(a) Using Fourier transform show that #;(w) and Zo(w) satisfy the algebraic equations

(Wi — Wi (W) — wgfég(w) =0, (25a)
= 0.

—waF (W) + (W2 — w?)Ta(w) (25b)

Observe that they decouple for ws = 0. The explicit nature of the coupling is brought
out by writing the solutions, #;(w) and Zs(w), in the form

7w%ci)’w2)li'2(w% (26&)
3 )fi’l(w). (26b)

B (wg — w?

Using the two solutions in conjunction show that the solutions satisfy

(W= A1) (w~+ M) (w =) (w+ X)T1(w) =0, (27a)
(W= A1) (w+ M) (w—=A)(w~+ A)Ta(w) = 0, (27D)
where +£)\; and +\, are roots of the quartic equation
(W? — wd)(W? —wl) — w3 =0. (28)
Evaluate the roots for w3 > w? to be
(Wi +w?) 1
=2 "L 5 L+ 5\/(w§ — w?)? + 4ws, (29a)
2 2
1
o Wt ; wi) _ 5\/ (w2 — w2)? + 4wt (29D)
and express them in the form
N = wi + (1 — A?), (30a)
A =i = (0= A%, (30b)
where ) )
A2 — ((A)2 _ wl) (31)
2
and

p? = /AL + Wi (32)

Determine the normal modes \; and Ay for ws = 0.

(b) Derive the following. The difference in the square of roots,

>‘§ o A% = 2:“’27 (33)



and the change in the normal modes due to coupling,

wi = At = (1 =A%), (34a)

wi =Ny = —(1® + A%, (34D)
and

W X2 = (2 4 AY), (35)

wy — Ay = —(u* — A%). (35b)
Using the above relations together with

Wi = V(2 + A%)(u2 — A?) (36)
derive
w3 p?+ A2 w3

=— (37a)

- \Erar - @-ny (37b)

(c) Argue that the solutions for the algebraic expressions in Egs. (27) can be expressed
in the form

T1(w) = a1 ()6 ((w — M) (w + M) (w — Ao) (w + A)), (38a)
To(w) = ao(w)d((w — M) (w+ M) (w — A2)(w + A2)), (38b)
where a@;(w) and as(w) are arbitrary. Using the property of d-functions show that
Zi'l(W) o 1 dl()\l) &1(—)\1)
o B [ N dw— A1) + . d(w+ A1)
+“1§22)5(w — o) + “1(32)5@) + Az)] : (39a)
i’g(&)) N 1 62()\1) dg(-)q)
on SR [ N O(w— A1) + N O(w~+ A1)
+“2§22)5(w — o) + “2(;32)5(&) + )\2)] . (39D)

The aribitrary coefficients are related due to the coupling in Egs. (26). Thus, verify

that
_ 2+ A2
dn(£N) = ,/52_ 5a(), (40a)
2 __ A2
i) = =[5tk (40b)

5




and

_ pr— A2
as(£A1) = M2+A201(i>\1), (41a)
_ w2+ A%
ag(j:)\g) = — qu — Azal(ﬂ:)\g). (41b)
Using Egs. (39) in the Fourier transform
Cdw
x(t) = /_Oo o ety (w) (42)
and the redefinitions
1 a(\) 1 a(=\)
8mu? A\ YDV (432)
1 a;(A) 1 ai(—=Xg)
Ay = ——= By =—— 43h
? 8mu? Ao 2 Stu? Ny (43)
which are determined by initial conditions, show that
T (t) = Ale_i)‘lt + Bl6i)\1t + A26_M2t + BgeM2t, (44&)
p? — A2 —iArt iArt p? + A —iAat iAot
[L’g(t) = qu i A2 |:A16 + Ble — ,u2 A2 A26 24 Bg6 2 (44b)
For initial conditions
5(:1(0) = A7 xl(()) = 07 x2(0) = 07 x2(0) = 07 (45)
show that
A A2 A2
x1(t) = 3 {(1 + ﬁ) cos \it + (1 — ﬁ) cos )\gt} , (46a)
Aw?
xo(t) = EW cos A\jt — cos Aot | . (46b)
Sympathetic oscillations are characterized by the case
A? < ws (47)
when A2 )
(1)~ Son Heaird Maudoed a9
T 1
and

A Al — A A A
xl(t)za{cos)\ltjtcos)\gt} :Acos( 12 2)tcos( 1_5 2) t, (49a)

[ cos A\t — cos)\gt} = Asin <)\1 ; Az) t cos (Al _5 )\2) t.  (49b)
(t)

Plot z1(t) anf z5(t) for we = 1.01w; and w3 = 0.3wy, corresponding to ws ~ 10A.




