Homework No. 10 (2024 Spring)

PHYS 510: CLASSICAL MECHANICS

School of Physics and Applied Physics, Southern Illinois University—Carbondale
Due date: Tuesday, 2024 Apr 23, 4.30pm

1. (20 points.) (Refer Schwinger’s QM, chapter 9) The Hamiltonian for a Kepler problem
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where r; and ry are the positions of the two constituent particles of masses m; and msy.

(a) Introduce the coordinates representing the center of mass, relative position, total
momentum, and relative momentum:
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(b) Show that Hamilton’s equations of motion are given by
dR P dP dr  p dp  ar

=0, =

& S 5
dt ' dt r3 5)

dt M dt

(c) Verify that the Hamiltonian H, the angular momentum L = r X p, and the Laplace-
Runge-Lenz vector
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are the three constants of motion for the Kepler problem. That is, show that
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2. (20 points.) In the Kepler problem the orbit of a planet is a conic section
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expressed in terms of the eccentricity e and distance ry. Determine the constant ¢ to be
0 by requiring the initial condition
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The distance r is characterized by the fact that the effective potential
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is minimum at ry. We used the definitions
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Thus, the orbit of a planet is completely determined by the energy E and the angular
momentum L, which are constants of motion. The statement of conservation of angular
momentum can be expressed in the form
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which is convenient for evaluating the time elapsed in the motion. For the case of elliptic
orbit, Ueg(rg) < E < 0, show that the time period is given by
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Show that at point ‘2" in Figure 2

Figure 1: Elliptic orbit
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The time taken to go from ‘1’ to ‘2’ is given by (need not be proved here)
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Evaluate t;_,5 for e = 0 and e = 1. Show that at point ‘3’ in Figure 2
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The time taken to go from ‘1’ to ‘3’ is given by (need not be proved here)
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Similarly, the time taken to go from ‘3’ to ‘4’ is given by (need not be proved here)
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Evaluate the time elapsed in the above cases for e — 0 and e — 1. The eccentricity e of
Earth’s orbit is 0.0167 and timeperiod 7" is 365 days. Thus, calculate
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for Earth in units of days.



